Journal of Synthetic Crystals, Volume. 53, Issue 2, 181(2024)
Wet Oxidation of Semiconducting Silicon Carbide Wafers
[1] [1] LEBEDEV A A, CHELNOKOV V E. Wide-gap semiconductors for high-power electronics[J]. Semiconductors, 1999, 33(9): 999-1001.
[2] [2] LANGPOKLAKPAM C, LIU A C, CHU K H, et al. Review of silicon carbide processing for power MOSFET[J]. Crystals, 2022, 12(2): 245.
[3] [3] WANG W T, LU X S, WU X K, et al. Chemical-mechanical polishing of 4H silicon carbide wafers[J]. Advanced Materials Interfaces, 2023, 10(13): 2202369.
[4] [4] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S46.
[5] [5] ZHU Z Z, MURATOV V, FISCHER T E. Tribochemical polishing of silicon carbide in oxidant solution[J]. Wear, 1999, 225/226/227/228/229: 848-856.
[6] [6] LIANG Q R, HU X B, CHEN X F, et al. Chemical mechanical polishing of 4H-SiC with strong oxidizing slurry[J]. Journal of Synthetic Crystals, 2015, 44(7): 1741-1747 (in Chinese).
[7] [7] WANG W L, LIU W L, SONG Z T, et al. Effect of ferric nitrate on semi-insulating 4H-SiC (0001) chemical mechanical polishing[J]. ECS Journal of Solid State Science and Technology, 2022, 11(11): 114003.
[8] [8] PANG L F, LI X B, LI T T, et al. Ultra precision chemical mechanical polishing technology for SiC wafer[J]. Micronanoelectronic Technology, 2021, 58(11): 1035-1040 (in Chinese).
[9] [9] CHEN G M, NI Z F, XU L J, et al. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates[J]. Applied Surface Science, 2015, 359: 664-668.
[10] [10] DENG H, ENDO K, YAMAMURA K. Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)[J]. Scientific Reports, 2015, 5: 8947.
[11] [11] KUROKAWA S, DOI T, OHNISHI O, et al. Characteristics in SiC-CMP using MnO2 slurry with strong oxidant under different atmospheric conditions[J]. MRS Online Proceedings Library, 2013, 1560(1): 1-9.
[12] [12] PAN G S, ZHOU Y, LUO G H, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(12): 5040-5047.
[13] [13] ZHOU Y, PAN G S, SHI X L, et al. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers[J]. Tribology International, 2015, 87: 145-150.
[14] [14] NI Z F, CHEN G M, XU L J, et al. Effect of different oxidizers on chemical mechanical polishing of 6H-SiC[J]. Journal of Mechanical Engineering, 2018, 54(19): 224-231 (in Chinese).
[15] [15] GAO F, LI H, XU Y K. Influence of oxidant concentration on 4H-SiC chemical mechanical polishing result[J]. Journal of Functional Materials, 2016, 47(10): 10189-10192 (in Chinese).
[16] [16] HEYDEMANN V D, EVERSON W J, GAMBLE R D, et al. Chemi-mechanical polishing of on-axis semi-insulating SiC substrates[J]. Materials Science Forum, 2004, 457/458/459/460: 805-808.
[17] [17] AN J H, LEE G S, LEE W J, et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC(0001)[J]. Materials Science Forum, 2008, 600/601/602/603: 831-834.
[18] [18] CHEN G M, NI Z F, QIAN S H, et al. Influence of different crystallographic planes on CMP performance of SiC wafer[J]. Journal of Synthetic Crystals, 2019, 48(1): 155-159+172 (in Chinese).
[19] [19] HORNETZ B, MICHEL H J, HALBRITTER J. Oxidation and 6H-SiC-SiO2 interfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 767-771.
[20] [20] WANG W L, LIU W L, SONG Z T. Two-step chemical mechanical polishing of 4H-SiC (0001) wafer[J]. ECS Journal of Solid State Science and Technology, 2021, 10(7): 074004.
[21] [21] MATSUSHITA Y I, OSHIYAMA A. Mechanisms of initial oxidation of 4H-SiC (0001) and (000-1) surfaces unraveled by first-principles calculations[EB/OL]. 2016: arXiv: 1612.00189. https://arxiv.org/abs/1612.00189.
[22] [22] ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301.
[23] [23] XIE X N, LOH K P, YAKOLEV N, et al. Oxidation of the 3×3 6H-SiC (0001) adatom cluster: a periodic density functional theory and dynamic rocking beam analysis[J]. The Journal of Chemical Physics, 2003, 119(9): 4905-4915.
[24] [24] STARKE U, SCHARDT J, BERNHARDT J, et al. Novel reconstruction mechanism for dangling-bond minimization: combined method surface structure determination of SiC(111)-(3×3)[J]. Physical Review Letters, 1998, 80(4): 758-761.
[25] [25] IMONKA V, HSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798.
[26] [26] NEWSOME D A, SENGUPTA D, FOROUTAN H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121.
[27] [27] TIAN Z G, LU J, LUO Q F, et al. Chemical reaction on silicon carbide wafer (0001) and (000-1) with water molecules in nanoscale polishing[J]. Applied Surface Science, 2023, 607: 155090.
[28] [28] HSIEH C H, CHANG C Y, HSIAO Y K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies[J]. Micromachines, 2022, 13(10): 1752.
[29] [29] WANG J, WANG T Q, PAN G S, et al. Effect of photocatalytic oxidation technology on GaN CMP[J]. Applied Surface Science, 2016, 361: 18-24.
[30] [30] KUBOTA A, KURIHARA K, TOUGE M. Fabrication of smooth surface on 4H-SiC substrate by ultraviolet assisted local polishing in hydrogen peroxide solution[J]. Key Engineering Materials, 2012, 523/524: 24-28.
[31] [31] YUAN Z W, HE Y, SUN X W, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer[J]. Materials and Manufacturing Processes, 2018, 33(11): 1214-1222.
[32] [32] GUO C S, WANG K, HOU S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718.
[33] [33] LEE H S, KIM D I, AN J H, et al. Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)[J]. CIRP Annals, 2010, 59(1): 333-336.
[34] [34] YAN Q S, WANG X, XIONG Q A, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379.
[35] [35] LU J B, XIONG Q, YAN Q S, et al. Effect of chemical reaction rate in ultraviolet photocatalytic auxiliary SiC polishing process[J]. Surface Technology, 2019, 48(11): 148-158 (in Chinese).
[36] [36] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): 603-608.
[37] [37] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201.
[38] [38] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16.
[39] [39] WANG W T, ZHANG B G, SHI Y H, et al. Improvement in chemical mechanical polishing of 4H-SiC wafer by activating persulfate through the synergistic effect of UV and TiO2[J]. Journal of Materials Processing Technology, 2021, 295: 117150.
[40] [40] SAKAMOTO T, TOUGE M, KUBOTA A. Polishing characteristics of 4H-SiC wafer in ultraviolet-ray irradiation assisted polishing[J]. 2012: 201-204.
[41] [41] TANAKA T, TAKIZAWA M, HATA A. Verification of the effectiveness of UV-polishing for 4H-SiC wafer using photocatalyst and cathilon[J]. International Journal of Automation Technology, 2018, 12(2): 160-169.
[42] [42] YAN Q S, WANG X, XIONG Q, et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 2020, 531: 125379.
[43] [43] CHEN C C A, HSIEH C H. Effect of inhibiter concentration on Cu CMP slurry analyzed by a Cu-ECMP system[J]. ECS Transactions, 2010, 33(10): 107-113.
[44] [44] YIN X C, LI S J, MA G L, et al. Investigation of oxidation mechanism of SiC single crystal for plasma electrochemical oxidation[J]. RSC Advances, 2021, 11(44): 27338-27345.
[45] [45] KAO Z X, ZHANG B G, YU X, et al. Electrochemical corrosion and chemical mechanical polishing of single crystal SiC[J]. Semiconductor Technology, 2019, 44(8): 628-634 (in Chinese).
[46] [46] DENG J Y, LU J B, YAN Q S, et al. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on Electro-Fenton reaction[J]. Diamond and Related Materials, 2021, 111: 108147.
[47] [47] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730.
[48] [48] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review[J]. Journal of Hazardous Materials, 2014, 267: 194-205.
[49] [49] FU F L, XIE L P, TANG B, et al. Application of a novel strategy: advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189/190: 283-287.
[50] [50] LU J B, CHEN R, LIANG H Z, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction[J]. Precision Engineering, 2018, 52: 221-226.
[51] [51] XU S P. Research on single-crystal SiC cluster magnetorheological chemical composite polishing based on Fenton reaction [D]. Guangzhou: Guangdong University of Technology, 2016 (in Chinese).
[52] [52] DENG J Y, PAN J S, ZHANG Q X, et al. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate[J]. Surfaces and Interfaces, 2020, 21: 100730.
[53] [53] KOSUGI R, ICHIMURA S, KUROKAWA A, et al. Effects of ozone treatment of 4H-SiC(0001) surface[J]. Applied Surface Science, 2000, 159/160: 550-555.
[54] [54] UNEDA M, FUJII K. Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas[J]. Precision Engineering, 2020, 64: 91-97.
[55] [55] CAO J G, WU Y B, LI J Y, et al. A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 875-885.
[56] [56] QU W, WANG K, MILLER M H, et al. Using vibration-assisted grinding to reduced subsurface damage[J]. Precision Engineering, 2000(4): 24.
[57] [57] ZHAO Q L, SUN Z Y, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39.
[58] [58] HU Y, SHI D, HU Y, et al. Investigation on the material removal and surface generation of a single crystal SiC wafer by ultrasonic chemical mechanical polishing combined with ultrasonic lapping[J]. Materials, 2018, 11(10): 2022.
Get Citation
Copy Citation Text
LU Xuesong, WANG Wantang, WANG Rong, YANG Deren, PI Xiaodong. Wet Oxidation of Semiconducting Silicon Carbide Wafers[J]. Journal of Synthetic Crystals, 2024, 53(2): 181
Category:
Received: Jun. 25, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Rong WANG (rong_wang@zju.edu.cn)
CSTR:32186.14.