Acta Optica Sinica, Volume. 38, Issue 4, 0411004(2018)
Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model
[1] Buzug T M. Computed tomography: From photon statistics to modern cone-beam CT[M]. Berlin Heidelberg: Springer-Verlag(2008).
[2] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1, 612-619(1984).
[7] Natterer F, Wubbeling F. Mathematical methods in image reconstruction[M]. Philadelphia: Society for Industrial and Applied Mathematics(2001).
[9] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[13] Ma J M, Zhang J Q, Song G Z et al. Total variation constrained iterative filtered backprojection CT reconstruction method[J]. Acta Optica Sinica, 32, 0234002(2015).
[17] Wang X Y, Yan H, Cervino L et al. Iterative cone beam CT reconstruction on a multi-GPU platform[J]. Medical Physics, 40, 543(2013).
[18] Fehringer A, Lasser T, Zanette I et al. A versatile tomographic forward-and back-projection approach on multi-GPUs[C]. SPIE, 9034, 90344F(2014).
Get Citation
Copy Citation Text
Wanli Lu, Ailong Cai, Zhizhong Zheng, Linyuan Wang, Lei Li, Bin Yan. Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model[J]. Acta Optica Sinica, 2018, 38(4): 0411004
Category: Imaging Systems
Received: Apr. 5, 2017
Accepted: --
Published Online: Jul. 10, 2018
The Author Email: Yan Bin (ybspace@hotmail.com)