Acta Optica Sinica, Volume. 38, Issue 4, 0411004(2018)

Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model

Wanli Lu, Ailong Cai, Zhizhong Zheng, Linyuan Wang, Lei Li, and Bin Yan*
Author Affiliations
  • Institute of Information System Engineering, Information Engineering University of Chinese People's Liberation Army, Zhengzhou, Henan 450002, China
  • show less
    Figures & Tables(6)
    (a) Synchronous parallel computing; (b) asynchronous parallel computing
    Structures of GPU cluster
    Original image and reconstruction results of middle slices at iteration of 2000 times. (a) Original image; (b) result of experiment 1; (c) result of experiment 2; (d) result of sync-parallel computing in experiment 3; (e) result of async-parallel computing in experiment 3; (f) result of sync-parallel computing in experiment 4; (g) result of async-parallel computing in experiment 4
    • Table 1. Parameters of reconstruction acceleration experimental platform

      View table

      Table 1. Parameters of reconstruction acceleration experimental platform

      ItemComputing server model
      GPU computing server IGPU computing server II
      CPUIntel IvyBridgeE5-2630v2 (2.6 GHz)Intel IvyBridgeE5-2630v2 (2.6 GHz)
      GPUTesla K20 (5 G)×1Tesla K20 (5 G)×1Tesla K40 (12 G)×1
      RAM32 G32 G
      Operating systemWindows 7, 64 bitWindows 7, 64 bit
      Number22
    • Table 2. Scanning parameters of cone-beam CT system

      View table

      Table 2. Scanning parameters of cone-beam CT system

      ItemParameter
      Scanning angle range /(°)0-360
      Number of probes1024×1024
      Distance from source to rotation center /mm600
      Distance from source to detector /mm1200
      Projection number60
      Total of projection data1024×1024×60
      Reconstruction scale512×512×512
      Pixel size /mm×mm0.25×0.25
    • Table 3. RMSE of results at iteration of 2000 times and average iteration time of each iteration for four experiments

      View table

      Table 3. RMSE of results at iteration of 2000 times and average iteration time of each iteration for four experiments

      ResultExperiment 1Experiment 2Experiment 3Experiment 4
      Synchronous parallelAsynchronous parallelSynchronous parallelAsynchronous parallel
      RMSE6.78×10-46.78×10-46.78×10-45.69×10-46.78×10-45.34×10-4
      Average single time /s6842.00130.5053.9351.4953.2645.67
      Rspeed (compared with CPU)-52.4126.9132.9128.5149.8
      Rspeed (compared with single GPU)--2.422.532.452.86
    Tools

    Get Citation

    Copy Citation Text

    Wanli Lu, Ailong Cai, Zhizhong Zheng, Linyuan Wang, Lei Li, Bin Yan. Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model[J]. Acta Optica Sinica, 2018, 38(4): 0411004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Apr. 5, 2017

    Accepted: --

    Published Online: Jul. 10, 2018

    The Author Email: Yan Bin (ybspace@hotmail.com)

    DOI:10.3788/AOS201838.0411004

    Topics