Chinese Journal of Lasers, Volume. 49, Issue 10, 1002501(2022)

Machining of Micro-Optical Elements Using Electrons Dynamics Controlled Temporally/Spatially Shaped Femtosecond Laser

Mengnan Wu1,2, Xiaowei Li2、*, Zhikun Xiang2, Leyi Zhang2, Yanpei Yang2, Zhipeng Wang2, and Yang Liu2
Author Affiliations
  • 1School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(141)

    [1] Jiang L, Zhao L J, Wang S M et al. Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment[J]. Optics Express, 19, 17591-17598(2011).

    [2] Hua J G, Ren H, Jia A et al. Convex silica microlens arrays via femtosecond laser writing[J]. Optics Letters, 45, 636-639(2020).

    [3] Zhang F, Duan J A, Zhou X F et al. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam[J]. Optics Express, 26, 34016-34030(2018).

    [4] Wang Z P, Li X W, Jiang L et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses[J]. Nanophotonics, 9, 2895-2904(2020).

    [5] Wu D, Chen Q D, Niu L G et al. 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision[J]. IEEE Photonics Technology Letters, 21, 1535-1537(2009).

    [6] Luo Z, Wang C, Yin K et al. Rapid fabrication of cylindrical microlens array by shaped femtosecond laser direct writing[J]. Applied Physics A, 122, 633(2016).

    [7] Gamaly E[M]. Femtosecond laser-matter interaction: theory, experiments and applications(2011).

    [8] Juodkazis S, Nishimura K, Tanaka S et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).

    [9] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).

    [10] Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 48, 487-499(2005).

    [11] Stoian R, Rosenfeld A, Ashkenasi D et al. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Physical Review Letters, 88, 097603(2002).

    [12] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).

    [13] Jiang L, Tsai H L. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains[J]. Journal of Heat Transfer, 128, 926-933(2006).

    [14] Momma C, Chichkov B N, Nolte S et al. Short-pulse laser ablation of solid targets[J]. Optics Communications, 129, 134-142(1996).

    [15] Yuan Y, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nature Communications, 11, 6185(2020).

    [16] Yao Z L, Jiang L, Li X W et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 26, 21960-21968(2018).

    [17] Huang J, Jiang L, Li X W et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification[J]. Nanophotonics, 8, 869-878(2019).

    [18] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).

    [19] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).

    [20] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [21] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [22] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [23] Sakakura M, Terazima M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass[J]. Physical Review B, 71, 024113(2005).

    [24] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [25] Du K, Li X W, Zhang H et al. Controllable photon energy deposition efficiency in laser processing of fused silica by temporally shaped femtosecond pulse: experimental and theoretical study[J]. Optics & Laser Technology, 128, 106265(2020).

    [26] Xu C C, Jiang L, Leng N et al. Ultrafast laser ablation size and recast adjustment in dielectrics based on electron dynamics control by pulse train shaping[J]. Chinese Optics Letters, 11, 41403-41406(2013).

    [27] Zhao M, Hu J, Jiang L et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control[J]. Scientific Reports, 5, 13202(2015).

    [28] Liang M S, Li X, Wang M M et al. Spatially-shaped femtosecond laser manufacturing of microgrooves in metals[J]. Chinese Journal of Lasers, 48, 0202003(2021).

    [29] Ding K W, Wang C, Luo Z et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Journal of Lasers, 48, 0202005(2021).

    [30] Ling J Z[D]. Research on fabrication and applications of special holographic gratings(2013).

    [31] Yao J W, Zhang C Y, Liu H Y et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses[J]. Applied Surface Science, 258, 7625-7632(2012).

    [32] Campanella C E, Cuccovillo A, Campanella C et al. Fibre Bragg grating based strain sensors: review of technology and applications[J]. Sensors, 18, 3115(2018).

    [33] Dammann H, Görtler K. High-efficiency in-line multiple imaging by means of multiple phase holograms[J]. Optics Communications, 3, 312-315(1971).

    [34] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 92, 041914(2008).

    [35] Huang J, Jiang L, Li X W et al. Controllable photonic structures on silicon-on-insulator devices fabricated using femtosecond laser lithography[J]. ACS Applied Materials & Interfaces, 13, 43622-43631(2021).

    [36] Chen Q D, Lin X F, Niu L G et al. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Optics Letters, 33, 2559-2561(2008).

    [37] Xu L Q, Wang C W, Qi X B et al. Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy[J]. Applied Physics Letters, 119, 131101(2021).

    [38] Machida M, Nakajima Y, Torres-Mapa M L et al. Shrinkable silver diffraction grating fabricated inside a hydrogel using 522-nm femtosecond laser[J]. Scientific Reports, 8, 187(2018).

    [39] Martinez A, Dubov M, Khrushchev I et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 40, 1170-1172(2004).

    [40] Zhou X, Dai Y T, Karanja J M et al. Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser[J]. Optical Engineering, 56, 027108(2017).

    [41] Takashima H, Fukuda A, Maruya H et al. Fabrication of a nanofiber Bragg cavity with high quality factor using a focused helium ion beam[J]. Optics Express, 27, 6792-6800(2019).

    [42] Florea C, Sanghera J S, Aggarwal I D. Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser[J]. Optical Materials, 30, 1603-1606(2008).

    [43] Ma W Q, Zhang P Q, Zhou W J et al. Femtosecond-laser direct-writing volume phase gratings inside Ge-As-S chalcogenide glass[J]. Ceramics International, 46, 17599-17605(2020).

    [44] Ma W Q, Zhang P Q, Zhou W J et al. Diffraction grating fabricated on chalcogenide glass fiber end surfaces with femtosecond laser direct writing[J]. Journal of Lightwave Technology, 39, 2136-2141(2021).

    [45] Wei D, Wang C, Xu X et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).

    [46] Liu S, Switkowski K, Xu C et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nature Communications, 10, 3208(2019).

    [47] Li J J, Chu C Y, Lu W T et al. Development of microlens arrays: from fabrication to photonic applications[J]. Acta Optica Sinica, 41, 2100001(2021).

    [48] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [49] Florian C, Piazza S, Diaspro A et al. Direct laser printing of tailored polymeric microlenses[J]. ACS Applied Materials & Interfaces, 8, 17028-17032(2016).

    [50] Sun Y L, Dong W F, Yang R Z et al. Dynamically tunable protein microlenses[J]. Angewandte Chemie International Edition, 51, 1558-1562(2012).

    [51] Tian Z N, Wang L J, Chen Q D et al. Beam shaping of edge-emitting diode lasers using a single double-axial hyperboloidal micro-lens[J]. Optics Letters, 38, 5414-5417(2013).

    [52] Lin J Q, Kan Y D, Jing X et al. Design and fabrication of a three-dimensional artificial compound eye using two-photon polymerization[J]. Micromachines, 9, 336(2018).

    [53] Li Y Z, Park S, Fullager D B et al. Near-infrared transmittance enhancement using fully conformal antireflective structured surfaces on microlenses fabricated by direct laser writing[J]. Optical Engineering, 58, 010501(2019).

    [54] Lin C H, Jiang L, Chai Y H et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 97, 751-757(2009).

    [55] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334-20343(2010).

    [56] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015).

    [57] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).

    [58] Liu X Q, Yang S N, Sun Y L et al. Ultra-smooth micro-optical components of various geometries[J]. Optics Letters, 44, 2454-2457(2019).

    [59] Sohn I B, Choi H K, Noh Y C et al. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property[J]. Applied Surface Science, 479, 375-385(2019).

    [60] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process[J]. Applied Physics Letters, 109, 221109(2016).

    [61] Deng Z F, Chen F, Yang Q et al. Compound eyes: dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Advanced Functional Materials, 26, 1853(2016).

    [62] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).

    [63] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).

    [64] Deng Z F, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 26, 2086-2089(2014).

    [65] Wei Y, Yang Q, Bian H et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems[J]. Applied Surface Science, 457, 1202-1207(2018).

    [66] Hu Y L, Rao S L, Wu S Z et al. Optofluidic microlenses: all-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching[J]. Advanced Optical Materials, 6, 1870035(2018).

    [67] He Z Q, Lee Y H, Chanda D et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization[J]. Optics Express, 26, 21184-21193(2018).

    [68] Zheng C, Hu A M, Kihm K D et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging[J]. Small, 11, 3007-3016(2015).

    [69] Zheng C, Hu A M, Li R Z et al. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser[J]. Optics Express, 23, 17584-17598(2015).

    [70] Ocier C R, Richards C A, Bacon-Brown D A et al. Direct laser writing of volumetric gradient index lenses and waveguides[J]. Light: Science & Applications, 9, 196(2020).

    [71] Xu C, Zhang F, Lu S Q et al. Gold filled in Fresnel zone plate fabricated by femtosecond laser on fiber tip[J]. Optical Fiber Technology, 64, 102572(2021).

    [72] Watanabe W, Kuroda D, Itoh K et al. Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses[J]. Optics Express, 10, 978-983(2002).

    [73] Srisungsitthisunti P, Ersoy O K, Xu X F. Volume Fresnel zone plates fabricated by femtosecond laser direct writing[J]. Applied Physics Letters, 90, 011104(2007).

    [74] Lin H, Xu Z Q, Cao G et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science & Applications, 9, 137(2020).

    [75] Liu Y Q, Mao J W, Chen Z D et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 45, 113-116(2019).

    [76] Low M J, Lee H, Lim C H J et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing[J]. Applied Surface Science, 526, 146647(2020).

    [77] Kim J K, Kim J, Oh K et al. Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system[J]. IEEE Photonics Technology Letters, 21, 21-23(2009).

    [78] Kim J, Ha W, Park J et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser[J]. IEEE Photonics Technology Letters, 25, 761-763(2013).

    [79] Kim H, Kim J, An H et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light[J]. Optics Express, 25, 30290-30303(2017).

    [80] Tan X L, Geng Y F, Chen Y et al. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications[J]. Optical Engineering, 57, 026119(2018).

    [81] Sohn I B, Ahsan M S, Noh Y C et al. Fabrication of Fresnel zone plate lens in fused silica glass using femtosecond laser lithography technology[J]. Optical Engineering, 53, 055107(2014).

    [82] Li Q K, Yu Y H, Wang L et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 28, 1290-1293(2016).

    [83] Guo H C, Li Y, Wang X et al. Fabrication of high refractive index-modulation structures in fused silica by femtosecond laser pulses[J]. Proceedings of SPIE, 5646, 480-488(2005).

    [84] Choi J, Ramme M, Anderson T et al. Femtosecond laser written embedded diffractive optical elements and their applications[J]. Proceedings of SPIE, 7589, 143-154(2010).

    [85] Tian Z N, Hua J G, Hao J et al. Micro-buried spiral zone plate in a lithium niobate crystal[J]. Applied Physics Letters, 110, 041102(2017).

    [86] Choi J, Ramme M, Richardson M. Multiple beam splitter using volumetric multiplexed Fresnel zone plates fabricated by ultrafast laser-writing[J]. Optics Letters, 37, 3375-3377(2012).

    [87] Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 91, 171105(2007).

    [88] Yu Y H, Tian Z N, Jiang T et al. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing[J]. Optics Communications, 362, 69-72(2016).

    [89] Wu D, Niu L G, Chen Q D et al. High efficiency multilevel phase-type fractal zone plates[J]. Optics Letters, 33, 2913-2915(2008).

    [90] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 4, e228(2015).

    [91] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 100, 023116(2006).

    [92] Wang C, Jiang L, Wang F et al. First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions[J]. Physics Letters A, 375, 3200-3204(2011).

    [93] Wang C, Jiang L, Wang F et al. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 24, 275801(2012).

    [94] Jiang L, Fang J Q, Cao Q et al. Femtosecond laser high-efficiency drilling of high-aspect-ratio microholes based on free-electron-density adjustments[J]. Applied Optics, 53, 7290-7295(2014).

    [95] Jiang L, Liu P J, Yan X L et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains[J]. Optics Letters, 37, 2781-2783(2012).

    [96] Du K, Jiang L, Li X W et al. Chemical etching mechanisms and crater morphologies pre-irradiated by temporally decreasing pulse trains of femtosecond laser[J]. Applied Surface Science, 469, 44-49(2019).

    [97] Wang A, Jiang L, Li X et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 27, 6238-6243(2015).

    [98] Wang A D, Jiang L, Li X W et al. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films[J]. Optics & Laser Technology, 101, 298-303(2018).

    [99] Wang Z[D]. High-throughput microchannels fabrication in fused silica by temporally shaped femtosecond laser Bessel beam(2017).

    [100] Siders C W, Siders J L, Taylor A J et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 37, 5302-5305(1998).

    [101] Zhou S A, Ouzounov D, Li H et al. Efficient temporal shaping of ultrashort pulses with birefringent crystals[J]. Applied Optics, 46, 8488-8492(2007).

    [102] McLeod J H. The axicon: a new type of optical element[J]. Journal of the Optical Society of America, 44, 592-597(1954).

    [103] Rioux M, Tremblay R, Bélanger P A. Linear, annular, and radial focusing with axicons and applications to laser machining[J]. Applied Optics, 17, 1532-1536(1978).

    [104] Durnin J, Miceli J, Jr, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [105] Chen T Q, Zhang G D, Wang Y S et al. Reconstructing of embedded high-aspect-ratio nano-voids generated by ultrafast laser Bessel beams[J]. Micromachines, 11, 671(2020).

    [106] Wang Z, Jiang L, Li X W et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Optics Letters, 43, 98-101(2018).

    [107] Osellame R, Taccheo S, Marangoni M et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 20, 1559-1567(2003).

    [108] Kuczyńska D, Kwaśniak P, Marczak J et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Applied Surface Science, 390, 560-569(2016).

    [109] Zhang C, Hu Y, Du W et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 6, 33281(2016).

    [110] Ni J, Wang C, Zhang C et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 6, e17011(2017).

    [111] Gauthier G, Lenton I, Parry N M et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials[J]. Optica, 3, 1136-1143(2016).

    [112] Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser & Optoelectronics Progress, 57, 111431(2020).

    [113] Zhao M J[D]. Research on material modification by femtosecond pulse trains based on electron dynamic control(2016).

    [114] Qin B, Li X W, Yao Z L et al. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser[J]. Optics Express, 29, 4596-4606(2021).

    [115] Liu W, Jiang L, Han W N et al. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains[J]. Optics Express, 27, 9782-9793(2019).

    [116] Miyazaki K, Miyaji G. Nanograting formation through surface plasmon fields induced by femtosecond laser pulses[J]. Journal of Applied Physics, 114, 153108(2013).

    [117] Wang L, Chen Q D, Cao X W et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 6, e17112(2017).

    [118] Dostovalov A, Bronnikov K, Korolkov V et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications[J]. Nanoscale, 12, 13431-13441(2020).

    [119] Zou T, Zhao B, Xin W et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light: Science & Applications, 9, 69(2020).

    [120] Huang J, Jiang L, Li X W et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency[J]. Advanced Optical Materials, 7, 1900706(2019).

    [121] He J, Wang Y P, Liao C R et al. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser[J]. Optics Letters, 40, 2008-2011(2015).

    [122] Jiang Y J, Yuan Y, Xu J et al. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser[J]. Optics and Lasers in Engineering, 86, 236-241(2016).

    [123] Sun X Y, Zeng L, Du H F et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Optics & Laser Technology, 124, 105969(2020).

    [124] Montz Z, Shirakov A, Ami U B et al. Optimal output coupler grating reflectivity for Er/Yb fiber lasers[J]. Optics & Laser Technology, 126, 106070(2020).

    [125] Saliminia A, Vallée R. Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses[J]. Optics Communications, 324, 245-251(2014).

    [126] Gao S. Anisotropic elliptical microbumps on gold films induced by slit-shaped femtosecond laser[J]. Proceedings of SPIE, 11885, 1188513(2021).

    [127] Li B H, Li X W, Zhao R Z et al. Polarization multiplexing terahertz metasurfaces through spatial femtosecond laser-shaping fabrication[J]. Advanced Optical Materials, 8, 2000136(2020).

    [128] Mikutis M, Kudrius T, Šlekys G et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 3, 1862-1871(2013).

    [129] Paipulas D, Mikutis M, Sirutkaitis V et al. Volumetric modifications in fused silica using Gaussian and Bessel femtosecond laser beams[J]. Proceedings of SPIE, 8786, 11306-11312(2013).

    [130] Sun Q, Lee T, Ding Z Q et al[C], JW3A.12(2018).

    [131] Zhang G, Cheng G, Bhuyan M et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Optics Letters, 43, 2161-2164(2018).

    [132] Bhuyan M K, Velpula P K, Colombier J P et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 104, 021107(2014).

    [133] Luo Z, Duan J A, Guo C L. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica[J]. Optics Letters, 42, 2358-2361(2017).

    [134] Wang A D, Jiang L, Li X W et al. Nanoscale material redistribution induced by spatially modulated femtosecond laser pulses for flexible high-efficiency surface patterning[J]. Optics Express, 25, 31431-31442(2017).

    [135] Yao Z L, Li X W, Wang Z P et al. High-efficiency fabrication of computer-generated holograms in silica glass using a femtosecond Bessel beam[J]. Optics & Laser Technology, 135, 106729(2021).

    [136] Li B H, Jiang L, Li X W et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping[J]. Advanced Optical Materials, 6, 1801021(2018).

    [137] Hu Y L, Chen Y H, Ma J Q et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Applied Physics Letters, 103, 141112(2013).

    [138] Cao X W, Lu Y M, Fan H et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array[J]. Applied Optics, 57, 9604-9608(2018).

    [139] Zhang Z Y, Zhang C C, Hu Y L et al. Highly uniform parallel microfabrication using a large numerical aperture system[J]. Applied Physics Letters, 109, 021109(2016).

    [140] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Optics and Lasers in Engineering, 70, 26-32(2015).

    [141] Fan H, Cao X W, Wang L et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse[J]. Optics Letters, 44, 5149-5152(2019).

    Tools

    Get Citation

    Copy Citation Text

    Mengnan Wu, Xiaowei Li, Zhikun Xiang, Leyi Zhang, Yanpei Yang, Zhipeng Wang, Yang Liu. Machining of Micro-Optical Elements Using Electrons Dynamics Controlled Temporally/Spatially Shaped Femtosecond Laser[J]. Chinese Journal of Lasers, 2022, 49(10): 1002501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 22, 2021

    Accepted: Feb. 11, 2022

    Published Online: May. 12, 2022

    The Author Email: Li Xiaowei (lixiaowei@bit.edu.cn)

    DOI:10.3788/CJL202249.1002501

    Topics