Chinese Journal of Lasers, Volume. 50, Issue 22, 2204003(2023)
System Design for Dark‑Field Detection of Nanoparticles on Wafer Metal Surface
[1] Atwater H A. The promise of plasmonics[J]. Scientific American, 296, 56-63(2007).
[2] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).
[3] Luo X G. Plasmonic metalens for nanofabrication[J]. National Science Review, 5, 137-138(2018).
[4] Chang C, Chen W, Chen Y et al. Recent progress on two-dimensional materials[J]. Acta Physico-Chimica Sinica, 37, 2108017(2021).
[5] Wang J, Li Z C, Liu W N. Rigorous analysis and systematical design of double-layer metal superlens for improved subwavelength imaging mediated by surface plasmon polaritons[J]. Nanomaterials, 12, 3553(2022).
[6] Li Z, Wang C T, Kong W J et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electronic Engineering, 48, 200466(2021).
[7] Zhou Y, Liang G F, Wen Z Q et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electronic Engineering, 48, 210399(2021).
[8] Wang C T, Zhao Z Y, Gao P et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 61, 585-599(2016).
[9] Luo Y F, Kong W J, Zhao C W et al. Subdiffraction nanofocusing of circularly polarized light with a plasmonic cavity lens[J]. Journal of Materials Chemistry C, 7, 5615-5623(2019).
[10] Gao P, Pu M B, Ma X L et al. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm[J]. Nanoscale, 12, 2415-2421(2020).
[11] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials[J]. Nature Photonics, 7, 948-957(2013).
[12] Beliaev L Y, Takayama O, Melentiev P N et al. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review[J]. Opto-Electronic Advances, 4, 210031(2021).
[13] Zhou R J, Edwards C, Bryniarski C et al. White-light interferometric microscopy for wafer defect inspection[J]. Proceedings of SPIE, 9336, 93362P(2015).
[14] Liu H Y, Sun X Q, Wang X et al. The localized enhancement of surface plasmon standing waves interacting with single nanoparticles[J]. Plasmonics, 16, 2109-2116(2021).
[15] Sun X Q, Liu H Y, Jiang L W et al. Detecting a single nanoparticle by imaging the localized enhancement and interference of surface plasmon polaritons[J]. Optics Letters, 44, 5707-5710(2019).
[16] Wang B, Tanksalvala M, Zhang Z et al. A new metrology technique for defect inspection via coherent Fourier scatterometry using orbital angular momentum beams[J]. Proceedings of SPIE, 11611, 116110L(2021).
[17] Kolenov D, Urbach H P, Pereira S F. Effect of polarization in evanescent wave amplification for the enhancement of scattering of nanoparticles on surfaces[J]. OSA Continuum, 3, 742-758(2020).
[18] Kolenov D, Zadeh I E, Horsten R C et al. Direct detection of polystyrene equivalent nanoparticles with diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry: erratum[J]. Optics Express, 30, 29841-29843(2022).
[19] Ai L F. Research on particle detection method on substrate surface based on scattered light dark field microscopy[D](2019).
[20] Lu M, Wang Z L, Zhang S Q et al. Polarization scattering characterization and discrimination principle of surface defects[J]. Acta Optica Sinica, 41, 1229001(2021).
[21] Chen X G, Wang C, Yang T J et al. Inline optical measurement and inspection for IC manufacturing: state-of-the-art, challenges, and perspectives[J]. Laser & Optoelectronics Progress, 59, 0922025(2022).
[22] Dong J T. Line-scanning laser scattering system for fast defect inspection of a large aperture surface[J]. Applied Optics, 56, 7089-7098(2017).
[23] Huang C Y, Chu R, Neskovic G. Rough film wafer sensitivity improvement using light scattering inspection system[C], 191-193(2013).
[25] Stover J C. Surface roughness measurements of curved surfaces by light scatter[J]. Optical Engineering, 21, 987-990(1982).
[26] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).
[27] Germer T A. Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness[J]. Applied Optics, 36, 8798-8805(1997).
[28] Nahm K B, Wolfe W L. Light-scattering models for spheres on a conducting plane: comparison with experiment[J]. Applied Optics, 26, 2995-2999(1987).
[29] Zhang Y H, Yang Y Y, Li C et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method[J]. Applied Optics, 55, 6162-6171(2016).
[30] Cho S, Lee J, Kim H et al. Super-contrast-enhanced darkfield imaging of nano objects through null ellipsometry[J]. Optics Letters, 43, 5701-5704(2018).
[31] Zhu J L, Liu J M, Xu T L et al. Optical wafer defect inspection at the 10 nm technology node and beyond[J]. International Journal of Extreme Manufacturing, 4, 032001(2022).
Get Citation
Copy Citation Text
Quan Deng, Zeyu Zhao, He Lin, Ling Liu, Xiachuqin Li, Gensen Yang, Xiangang Luo. System Design for Dark‑Field Detection of Nanoparticles on Wafer Metal Surface[J]. Chinese Journal of Lasers, 2023, 50(22): 2204003
Category: Measurement and metrology
Received: Jan. 9, 2023
Accepted: Mar. 15, 2023
Published Online: Nov. 7, 2023
The Author Email: Luo Xiangang (lxg@ioe.ac.cn)