Acta Optica Sinica, Volume. 44, Issue 1, 0106004(2024)
Research and Application Progress of Distributed Fiber Optic Hydrophone Technology
[1] Hopwood F L. Submarine acoustics[J]. Nature, 103, 467-469(1919).
[2] Duarte C M, Chapuis L, Collin S P et al. The soundscape of the anthropocene ocean[J]. Science, 371, eaba4658(2021).
[3] Carl W. Advance in global ocean acoustics[J]. Science, 369, 1433-1434(2020).
[4] Katzschmann R K, DelPreto J, MacCurdy R et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 3, eaar3449(2018).
[5] Afzal S S, Akbar W, Rodriguez O et al. Battery-free wireless imaging of underwater environments[J]. Nature Communications, 13, 5546(2022).
[6] Jin P, Fu J, Wang F L et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication[J]. Science Advances, 7, eabg2507(2021).
[7] Tian S Z, Chen D B, Wang H et al. Deep convolution stack for waveform in underwater acoustic target recognition[J]. Scientific Reports, 11, 9614(2021).
[8] Toky A, Singh R P, Das S. Localization schemes for underwater acoustic sensor networks: a review[J]. Computer Science Review, 37, 100241(2020).
[9] Madsen P T, Siebert U, Elemans C P H. Toothed whales use distinct vocal registers for echolocation and communication[J]. Science, 379, 928-933(2023).
[10] Matoza R S, Fee D, Assink J D et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga[J]. Science, 377, 95-100(2022).
[11] Bucaro J A, Dardy H D, Carome E F. Optical fiber acoustic sensor[J]. Applied Optics, 16, 1761-1762(1977).
[12] Chang N Q, Huang X D, Wang H B. Phase generated carrier demodulation approach in fiber-optic hydrophone based on extended kalman filter parameter estimation[J]. Chinese Journal of Lasers, 49, 1709001(2022).
[13] Hu Q H, Zhu X Q, Ma L N et al. Advances in passive-interferometric type fiber Bragg grating-based hydrophones[J]. Laser & Optoelectronics Progress, 60, 1106015(2023).
[14] Meng Z, Chen W, Wang J F et al. Research progress of fiber optic hydrophone technology[J]. Laser & Optoelectronics Progress, 58, 1306009(2021).
[15] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).
[16] Dandridge A. Fiber optic interferometric sensors at sea[J]. Optics and Photonics News, 30, 34-41(2019).
[17] Fang Z J, Chin K K, Qu R H et al[M]. Fundamentals of optical fiber sensors(2012).
[18] Murray M J, Davis A, Redding B. Fiber-wrapped mandrel microphone for low-noise acoustic measurements[J]. Journal of Lightwave Technology, 36, 3205-3210(2018).
[19] Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing[P].
[20] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).
[21] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[J]. Proceedings of SPIE, 8311, 83110S(2011).
[22] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).
[23] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).
[24] Tu G J, Zhang X P, Zhang Y X et al. The development of an Φ‑OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters, 27, 1349-1352(2015).
[25] Masoudi A, Newson T P. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution[J]. Optics Letters, 42, 290-293(2017).
[26] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).
[27] Liu S Q, Yu F H, Xu W J et al. Direct demodulation of differential phase from Φ‑OTDR using self-homodyne phase diversity receiver[C](2022).
[28] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).
[29] Qiu L Q, Ba D X, Zhou D W et al. High-sensitivity dynamic distributed pressure sensing with frequency-scanning φ‑OTDR[J]. Optics Letters, 47, 965-968(2022).
[30] Sha Z, Feng H, Zeng Z M. Phase demodulation method in phase-sensitive OTDR without coherent detection[J]. Optics Express, 25, 4831-4844(2017).
[31] He X G, Xie S R, Liu F et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics Letters, 42, 442(2017).
[32] Shang Y, Yang Y H, Wang C et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering[J]. Measurement, 79, 222-227(2016).
[33] Zhou J, Pan Z Q, Ye Q et al. Characteristics and explanations of interference fading of a Φ‑OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 31, 2947-2954(2013).
[34] Fernández-Ruiz M R, Costa L, Martins H F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology[J]. Sensors, 19, 4368(2019).
[35] Plotnikov M Y, Lavrov V S, Dmitraschenko P Y et al. Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications[J]. IEEE Sensors Journal, 19, 3376-3382(2019).
[36] Zhou H K. Research on vector hydrophone for aerial sonar buoy and its suspension technology[D], 19-60(2016).
[37] Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 23, 29038-29046(2015).
[38] Shang Y, Yang Y H, Wang C et al. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system[J]. Measurement Science and Technology, 27, 065201(2016).
[39] Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 34, 47-51(2017).
[40] Yang Y, Xu T W, Feng S W et al. Optical fiber hydrophone based on distributed acoustic sensing[J]. Proceedings of SPIE, 10849, 108490B(2018).
[41] Guan H J, Han B, Han Z W et al. High performance DAS-based optical fiber hydrophone[C], M4A.100(2020).
[42] Chen J F, Li H, Liu T et al. Fully distributed hydroacoustic sensing based on lightweight optical cable assisted with scattering enhanced fiber[C](2021).
[43] Lu B, Wu B Y, Gu J F et al. Distributed optical fiber hydrophone based on Φ‑OTDR and its field test[J]. Optics Express, 29, 3147-3162(2021).
[44] Yan G F, Long J Q, Jiang L et al. High performance marine towing cable system based on ultra-sensitive fiber-optic distributed acoustic sensing[C], 174-177(2023).
[45] Chen J F, Li H, Xiao X P et al. Fully distributed hydroacoustic sensing based on ultra-highly sensitive and lightweight fiber-optic hydrophone cable[J]. Optics and Lasers in Engineering, 169, 107734(2023).
[46] Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Optics Letters, 41, 5648-5651(2016).
[47] Gabai H, Eyal A. How to specify and measure sensitivity in distributed acoustic sensing (DAS)?[J]. Proceedings of SPIE, 10323, 103238A(2017).
[48] Alekseev A E, Tezadov Y A, Potapov V T. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source[J]. Laser Physics, 28, 065105(2018).
[49] Wang Z Y, Lu B, Ye Q et al. Recent progress in distributed fiber acoustic sensing with Φ-OTDR[J]. Sensors, 20, 6594(2020).
[50] Feng S W, Xu T W, Huang J F et al. Enhanced SNR phase-sensitive OTDR system with active fiber[J]. Proceedings of SPIE, 10849, 108490C(2018).
[51] Dorize C, Awwad E. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes[J]. Optics Express, 26, 12878-12890(2018).
[52] Costa L, Martins H F, Martin-Lopez S et al. Reaching pε/Hz sensitivity in a distributed optical fiber strain sensor[C], TuD3(2018).
[53] Zhou C M, Pang Y D, Qian L et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 37, 2568-2576(2019).
[54] Costa L, Martins H F, Martín-López S et al. Fully distributed optical fiber strain sensor with 10-12 ε/Hz sensitivity[J]. Journal of Lightwave Technology, 37, 4487-4495(2019).
[55] Dorize C, Awwad E, Renaudier J. High sensitivity Φ‑OTDR over long distance with polarization multiplexed codes[J]. IEEE Photonics Technology Letters, 31, 1654-1657(2019).
[56] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).
[57] Redding B, Murray M J, Donko A et al. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors[J]. Optics Express, 28, 14638-14647(2020).
[58] Gu J F, Lu B, Yang J Q et al. High SNR Φ‑OTDR based on frequency and wavelength diversity with differential vector aggregation method[J]. IEEE Photonics Journal, 12, 7103612(2020).
[59] Wang Z Y, Yang J Q, Gu J F et al. Practical performance enhancement of DAS by using dense multichannel signal integration[J]. Journal of Lightwave Technology, 39, 6348-6354(2021).
[60] Tang J G, Wang G D, Lü W H et al. Distributed acoustic sensing system based on inserting-zero Golay coding with ultra-weak fiber Bragg gratings[J]. IEEE Sensors Journal, 22, 15985-15990(2022).
[61] Lu B, Gu J F, Wang Z Y et al. Ultra-low-noise MIMO distributed acoustic sensor using few-mode optical fibers[J]. Journal of Lightwave Technology, 40, 3062-3071(2022).
[62] Fan C Z, Li H, He T et al. Large dynamic range optical fiber distributed acoustic sensing (DAS) with differential-unwrapping-integral algorithm[J]. Journal of Lightwave Technology, 39, 7274-7280(2021).
[63] Wu Y C, Cao Z H, Zhang S Q et al. Dynamic range enlargement of distributed acoustic sensing based on temporal differential and weighted-gauge approach[J]. Journal of Lightwave Technology, 40, 3038-3045(2022).
[64] Li W M, Lu Y, Chen Y et al. Directivity research of sensing channels in a distributed fiber optic hydrophone[J]. Journal of Physics: Conference Series, 2486, 012082(2023).
[65] Liang J J, Wang Z Y, Lu B et al. Distributed acoustic sensing for 2D and 3D acoustic source localization[J]. Optics Letters, 44, 1690-1693(2019).
[67] Mailloux R J[M]. Phased array antenna handbook(2005).
[68] Li W M, Chen Y, Liang Y et al. Directivity dependence of a distributed fiber optic hydrophone on array structure[J]. Sensors, 22, 6297(2022).
[69] Huang J B, Song W Z, Gu H C et al. Research progress on packaging and application of distributed feedback fiber laser hydrophone probe[J]. Laser & Optoelectronics Progress, 60, 0100002(2023).
[70] Lu B, Pan Z Q, Wang Z Y et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 42, 391-394(2017).
[71] Gao X Q, Yang R J. Modification of empirical formula for sound source level of submarine radiated noise[J]. Acoustics and Electronics Engineering, 3, 17-18, 21(2007).
[72] Shpalensky N, Shiloh L, Gabai H et al. Use of distributed acoustic sensing for Doppler tracking of moving sources[J]. Optics Express, 26, 17690-17696(2018).
[73] Liu Z C, Zhang L, Wei H M et al. Underwater acoustic source localization based on phase-sensitive optical time domain reflectometry[J]. Optics Express, 29, 12880-12892(2021).
[74] Cao W H, Cheng G L, Xing G X et al. Near-field target localisation based on the distributed acoustic sensing optical fibre in shallow water[J]. Optical Fiber Technology, 75, 103198(2023).
[75] Wang Z Y, Yang J Q, Gu J F et al. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology[J]. Optics Letters, 45, 5672-5675(2020).
[76] Lemon S G. Towed-array history, 1917-2003[J]. IEEE Journal of Oceanic Engineering, 29, 365-373(2004).
[77] Liu M A. Review on the development of towed linear array sonar technology[J]. Acoustics and Electronics Engineering, 3, 1-5(2006).
[78] Zhang C L. Research on vector hydrophone for towed array[D](2011).
[79] Ding P, Huang J B, Pang Y D et al. A towed line array with weak fiber Bragg grating hydrophones[J]. Acta Photonica Sinica, 50, 0706004(2021).
[80] Wang Z Y, Lu B, Ye L et al. Distributed optical fiber acoustic sensing and its application to seismic wave monitoring[J]. Laser & Optoelectronics Progress, 58, 1306006(2021).
[81] Li J X, Kim T, Lapusta N et al. The break of earthquake asperities imaged by distributed acoustic sensing[J]. Nature, 620, 800-806(2023).
[82] Taweesintananon K, Landrø M, Potter J R et al. Distributed acoustic sensing of ocean-bottom seismo-acoustics and distant storms: a case study from Svalbard, Norway[J]. Geophysics, 88, B135-B150(2023).
[83] Jousset P, Currenti G, Schwarz B et al. Fibre optic distributed acoustic sensing of volcanic events[J]. Nature Communications, 13, 1753(2022).
[84] Wilcock W. Illuminating tremors in the deep[J]. Science, 371, 882-884(2021).
[85] Cheng F, Chi B X, Lindsey N J et al. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific Reports, 11, 5613(2021).
[86] Lior I, Rivet D, Ampuero J P et al. Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning[J]. Scientific Reports, 13, 424(2023).
[87] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 366, 1103-1107(2019).
[88] Sladen A, Rivet D, Ampuero J P et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables[J]. Nature Communications, 10, 5777(2019).
[89] Matsumoto H, Araki E, Kimura T et al. Detection of hydroacoustic signals on a fiber-optic submarine cable[J]. Scientific Reports, 11, 2797(2021).
[90] Bouffaut L, Taweesintananon K, Kriesell H J et al. Eavesdropping at the speed of light: distributed acoustic sensing of baleen whales in the Arctic[J]. Frontiers in Marine Science, 9, 901348(2022).
[91] Landrø M, Bouffaut L, Kriesell H J et al. Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable[J]. Scientific Reports, 12, 19226(2022).
[92] Rørstadbotnen R A, Eidsvik J, Bouffaut L et al. Simultaneous tracking of multiple whales using two fiber-optic cables in the Arctic[J]. Frontiers in Marine Science, 10, 1130898(2023).
[93] Liu Y, Yang J, Wang Z et al. High performance miniaturized DAS-based hydrophone with spatial deviation method and marine object detection[C](2023).
[94] Xu T W, Ma L L, Yang K H et al. Mini-distributed acoustic sensing module for submarine application[J]. Optical Engineering, 60, 034106(2021).
Get Citation
Copy Citation Text
Zhaoyong Wang, Yifan Liu, Yici Chen, Jinyi Wu, Baiqi Chen, Kan Gao, Qing Ye, Haiwen Cai. Research and Application Progress of Distributed Fiber Optic Hydrophone Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106004
Category: Fiber Optics and Optical Communications
Received: Oct. 8, 2023
Accepted: Nov. 6, 2023
Published Online: Jan. 11, 2024
The Author Email: Wang Zhaoyong (wzhy0101@siom.ac.cn)