Acta Optica Sinica, Volume. 44, Issue 1, 0106004(2024)

Research and Application Progress of Distributed Fiber Optic Hydrophone Technology

Zhaoyong Wang1,2、*, Yifan Liu1,2, Yici Chen1,2, Jinyi Wu1,2, Baiqi Chen1,2, Kan Gao1, Qing Ye1,2, and Haiwen Cai1
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(10)
    Schematic diagram of hollow cylinder structure and optical fiber sensitization
    Φ-OTDR system with phase demodulation and spatial difference
    Directivity models of DFOH array. (a) Near field; (b) far field
    Experimental layout and target direction result in the first lake test[43]
    Distributed array model of DFOH[65,75]
    Cable structure, sample and its flow noise of the nodal DFOH towing cable[44]
    Simultaneously tracking of multiple whales with submarine communication cable in the Arctic[92]. (a) Overview of 60 km communication cable; (b)-(i) whale traces at different positions and corresponding swim speeds of whales
    • Table 1. Representative sound pressure sensitivity of DFOH

      View table

      Table 1. Representative sound pressure sensitivity of DFOH

      YearGroup

      Responsivity

      re rad/μPa

      Outer diameter /mmBearable pressureMethod
      2015Laser Institute,Shandong Academy of Sciences37-158.0 dBUltra-weak fiber grating array(UWFBG)
      2016Beihang University38-150.0 dBPGC demodulation method and optimizing the path difference and pulse width
      2017ITMO National Research University39

      -169.4 dB @495 Hz;

      -143.7 dB @40 Hz

      <20.0UWFBG,secondary coating of strong polymer fiber and thermoplastic rubber outer sheath(material is RTV655,Ym=5.6 MPa,thickness is 3.5 mm)
      2018Institute of Semiconductors,Chinese Academy of Sciences(CAS)40-141.6 dB @(20-1000)Hz12.5Hollow cylindrical structure probe based on elastic sensitive material,μm=0.4Ym=32 MPa
      2020Zhejiang Lab41-131.0 dB @(1-1024)HzAcoustic sensitive optical cable formed by spiral winding of optical fiber in elastic material
      2021Huazhong University of Science and Technology42-127.0 dB @(100-2000)Hz20.0UV exposure scattering enhancement point,spiral winding structure of the optical cable,winding ratio is 1∶5,elastic material Ym=10 MPa,sound-transparent sheath
      2021Shanghai Institute of Optics and Fine Mechanics(SIOM),CAS43-146.0 dB @(20-500)Hz12.5Not lower than 3 MPa;lateral pressure is not less than 10 N/mmSpiral winding structure of the optical cable,winding ratio is 1∶7.5,elastic material μm=0.4Ym=1.1 GPa,Polyurethane sheath
      2022Zhejiang Lab44-130.0 dB @(4-700)HzNode type towed array optical cable,optical fiber spiral winding
      2023Huazhong University of Science and Technology45

      -137.2 dB @(5-2000)Hz;

      -125.3 dB @1 Hz

      22.00.3 MPa,pulling force is 47.5 kNScattering enhancement point,optical fiber spiral winding,elastic material μm=0.35Ym=400 MPa
    • Table 2. Representative NL of DFOH

      View table

      Table 2. Representative NL of DFOH

      YearGroupSystem NLMethod
      2018Institute of Semiconductors,CAS50900 μrad/HzActive optical fiber
      2018Paris-Saclay University Nokia Bell Labs5110 μrad/HzPDM-QPSK(polarization division multiplexing quadrature phase shift keting)coding,polarization division coherent detection,10 UWFBGs
      2018Universidad de Alcalá524 pε/HzSOA(semiconductor optical amplifier)amplification,DWDM(dense wavelength division multiplexing)filtering,high-speed sampling(10 GS/s)
      2019Wuhan University of Technology532239 μrad/HzUWFBG,a new method based on 3×3 coupler demodulation and PGC demodulation
      2019Universidad de Alcalá545 pε/HzChirped pulse Φ-OTDR,post-processing interpolation method
      2019Paris-Saclay University Nokia Bell Labs55-30 dB@25.1 km,-50 dB@0.1 kmPolarization diversity BPSK(binary phase shift keying)coding
      2019Shanghai Jiao Tong University 56220 pε/Hz@108 kmTGD-OFDR(time-gated digital optical frequency domain reflectometry),bidirectional distributed Raman amplification,hamming window query pulse
      2020United States Naval Research Laboratory57-91 dB re rad/HzFiber scattering enhancement point based on femtosecond laser
      2020SIOM,CAS58-67.8 dB re rad/Hz5-level frequency diversity and 4-level wavelength diversity
      2021SIOM,CAS59-70 dB re rad/HzDense multichannel signal integration
      2022Wuhan University of Technology60-50.2 dB;58.3 pε/HzUWFBG array,inserting-zero Gray code coding
      2022SIOM,CAS61-88 dB re rad/Hz0.15 pε/HzFiber transverse mode diversity and frequency diversity
    • Table 3. Effective detection range of DHOH sonar for various targets[71]

      View table

      Table 3. Effective detection range of DHOH sonar for various targets[71]

      Target typeSound source level /dBEffective detection range /km
      High noise submarine>165>47
      Noise submarine145-16535-47
      Quiet submarine125-14523-35
      Extremely quiet submarine<125<23
    Tools

    Get Citation

    Copy Citation Text

    Zhaoyong Wang, Yifan Liu, Yici Chen, Jinyi Wu, Baiqi Chen, Kan Gao, Qing Ye, Haiwen Cai. Research and Application Progress of Distributed Fiber Optic Hydrophone Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Oct. 8, 2023

    Accepted: Nov. 6, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Wang Zhaoyong (wzhy0101@siom.ac.cn)

    DOI:10.3788/AOS231627

    CSTR:32393.14.AOS231627

    Topics