Acta Photonica Sinica, Volume. 54, Issue 6, 0610001(2025)

Lightweight Pedestrian Vehicle Detection Algorithm Based on Visible and Infrared Bimodal Fusion

Cuixia GUO, Yongtao XU, Zhanghuang ZOU, Zhijie PAN, and Feng HUANG*
Author Affiliations
  • School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350000,China
  • show less
    References(39)

    [1] ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3d object detection[C], 4490-4499(2018).

    [2] KIM S, SONG W J, KIM S H. Infrared variation optimized deep convolutional neural network for robust automatic ground target recognition[C], 1-8(2017).

    [3] LIU Yuhang, HUANG Zhenghua, SONG Qiong et al. PV-YOLO: a lightweight pedestrian and vehicle detection model based on improved YOLOv8[J]. Digital Signal Processing, 156, 104857-104857(2025).

    [4] SHI Huimin. Research on lightweight real-time target detection method based on attention mechanism[D](2023).

    [5] GIRSHICK R. Fast R-CNN[C], 1440-1448(2015).

    [6] REN S, HE K, GIRSHICK R. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 28, 91-99(2015).

    [7] LIU W, ANGUELOV D, ERHAN D. SSD: single shot multibox detector[C], 21-37(2016).

    [8] REDMON J, DIVVALA S, GIRSHICK R. You only look once: unified, real-time object detection[C], 779-788(2016).

    [9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C], 7263-7271(2017).

    [12] LI Chongyi, GUO Chunle, HAN Linghao et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9396-9416(2021).

    [13] LORE G K, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 61, 650-662(2017).

    [14] CHEN Zilong, LIANG Yaling, DU Minghui. Attention-based broad self-guided network for low-light image enhancement[C], 31-38(2022).

    [15] WU Wenhui, WENG Jian, ZHANG Pingping et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancemen[C], 5901-5910(2022).

    [16] XU Dan, OUYANG W, RICCI E. Learning cross-modal deep representations for robust pedestrian detection[C], 5363-5371(2017).

    [17] PARK K, KIM S, SOHN K. Unified multi-spectral pedestrian detection based on probabilistic fusion networks[J]. Pattern Recognition, 80, 143-155(2018).

    [18] DAI Xuerui, YUAN Xue, WEI Xueye. TIRNet: object detection in thermal infrared images for autonomous driving[J]. Applied Intelligence, 51, 1-18(2020).

    [19] CAO Yanpeng, LUO Xing, YANG Jiangxin et al. Locality guided cross-modal feature aggregation and pixel-level fusion for multispectral pedestrian detection[J]. Information Fusion, 88, 1-11(2022).

    [20] HWANG S, PARK J, KIM N et al. Multispectral pedestrian detection: benchmark dataset and baseline[C], 1037-1045(2015).

    [21] PIOTR D, RON A, SERGE B et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1532-1545(2014).

    [23] LI Chengyang, SONG Dan, TONG Ruofeng et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 85, 161-171(2019).

    [24] SUN Ying, HOU Zhiqiang, YANG Chen et al. Object detection algorithm based on dual-modal fusion network[J]. Acta Photonica Sinica, 52, 0110002(2023).

    [25] YANG Chen, HOU Zhiqiang, LI Xinyue et al. Object detection algorithm based on CNN-transformer dualmodal feature fusion[J]. Acta Photonica Sinica, 53, 0310001(2024).

    [26] HOU Zhiqiang, LI Xinyue, YANG Chen et al. Dual-branch network object detection algorithm based on dual-modality fusion of visible and infrared images[J]. Multimedia Systems, 30, 333(2024).

    [27] CHEN Yunfan, XIE Han, SHIN H. Multi-layer fusion techniques using a CNN for multispectral pedestrian detection[J]. IET Computer Vision, 12, 1179-1187(2018).

    [28] ZHUANG Yifan, PU Ziyuan, HU Jia et al. Illumination and temperature-aware multispectral networks for edge-computing-enabled pedestrian detection[J]. IEEE Transactions on Network Science and Engineering, 9, 1282-1295(2022).

    [29] GUAN Dayan, LUO Xing, CAO Yanpeng et al. Unsupervised domain adaptation for multispectral pedestrian detection[C], 434-443(2019).

    [30] ZHOU Kailai, CHEN Linsen, CAO Xun. Improving multispectral pedestrian detection by addressing modality imbalance problems[C], 787-803(2020).

    [33] ZHANG Xue, ZHANG Xiaohan, WANG Jiangcheng et al. TFDet: target-aware fusion for RGB-T pedestrian detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 1-15(2024).

    [34] SHEN Jifeng, CHEN Yifei, LIU Yue et al. ICAFusion: iterative cross-attention guided feature fusion for multispectral object detection[J]. Pattern Recognition, 145, 109913(2024).

    [35] JI Qingbo, QI Yufei. Dual-mode object detection algorithm based on feature enhancement and feature fusion[J]. Journal of Physics: Conference Series, 2816, 012091-012091(2024).

    [36] HOU Zhiqiang, YANG Chen, SUN Ying et al. An object detection algorithm based on infrared-visible dual modal feature fusion[J]. Infrared Physics and Technology, 137, 105107(2024).

    [37] SANDLER M, HOWARD A, ZHU Menglong et al. Mobilenetv2: inverted residuals and linear bottlenecks[C], 4510-4520(2018).

    [39] GAO Qi, ZHANG Cong, SHI Rui et al. An unmanned aircraft target detection method based on cross-modal progressive fusion[J]. Unmanned Systems Technology, 7, 54-64(2024).

    Tools

    Get Citation

    Copy Citation Text

    Cuixia GUO, Yongtao XU, Zhanghuang ZOU, Zhijie PAN, Feng HUANG. Lightweight Pedestrian Vehicle Detection Algorithm Based on Visible and Infrared Bimodal Fusion[J]. Acta Photonica Sinica, 2025, 54(6): 0610001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jul. 14, 2025

    The Author Email: Feng HUANG (huangf@fzu.edu.cn)

    DOI:10.3788/gzxb20255406.0610001

    Topics