Acta Photonica Sinica, Volume. 54, Issue 6, 0610001(2025)

Lightweight Pedestrian Vehicle Detection Algorithm Based on Visible and Infrared Bimodal Fusion

Cuixia GUO, Yongtao XU, Zhanghuang ZOU, Zhijie PAN, and Feng HUANG*
Author Affiliations
  • School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350000,China
  • show less
    Figures & Tables(14)
    Overall architecture of lightweight bimodal target detection based on differential modal feature fusion module
    Differential mode feature fusion module
    Lighting perception module
    FLIR ADAS detection results(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    LLVIP detection results(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    KAIST detection results(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    Daytime detection results of different scenes for each model in FLIR ADAS dataset(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    Detection results of different scene nights for each model of FLIR ADAS dataset(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    Comparison results between fogged and noisy images(red inverted triangles indicate missed detections and yellow inverted triangles indicate false detections)
    • Table 1. FLIR ADAS dataset ablation experiments result

      View table
      View in Article

      Table 1. FLIR ADAS dataset ablation experiments result

      Mobilenetv2DMFFIAmAP50/%mAP/%
      ----81.640.7
      --84.243.9
      --82.943.1
      85.445.2
    • Table 2. Performance comparison of different models in different datasets

      View table
      View in Article

      Table 2. Performance comparison of different models in different datasets

      DatasetModalityMethodParams/×106mAP50/%mAP/%
      FLIR ADASRGBYOLOv7-tiny6.0270.130.6
      ThermalYOLOv7-tiny6.0280.539.6
      RGB+TBaseline9.7781.640.7
      RGB+TOurs8.4685.445.2
      LLVIPRGBYOLOv7-tiny6.029044.9
      ThermalYOLOv7-tiny6.0295.862.3
      RGB+TBaseline9.7795.657.1
      RGB+TOurs8.4696.964.1
      KAISTRGBYOLOv7-tiny6.0249.319.9
      ThermalYOLOv7-tiny6.0268.430.4
      RGB+TBaseline9.7772.832.0
      RGB+TOurs8.4676.234.4
    • Table 3. Comparison of results of different models on FLIR ADAS dataset

      View table
      View in Article

      Table 3. Comparison of results of different models on FLIR ADAS dataset

      MethodDataParams/×106mAP50/%mAP/%FPS
      Mono-modality networks
      YOLOv5sRGB7.273.834.2147
      YOLOv5sThermal7.282.142.7--
      YOLOv7-tinyRGB6.0270.130.6163.93
      YOLOv7-tinyThermal6.0280.539.6--
      Multi-modality networks
      ICAFusionRGB+T120.2181.638.992.59
      CFTRGB+T206.0383.539.6111.1
      SLBAFRGB+T2.4979.339.753.8
      BaselineRGB+T9.7781.640.7--
      OursRGB+T8.4685.445.2208.3
    • Table 4. Comparison of results of different models on the LLVIP dataset

      View table
      View in Article

      Table 4. Comparison of results of different models on the LLVIP dataset

      MethodDatamAP50/%mAP/%FPS
      Mono-modality networks
      YOLOv5sRGB91.548.3113.6
      YOLOv5sThermal94.955.1--
      YOLOv7-tinyRGB9044.9105.3
      YOLOv7-tinyThermal95.862.3--
      Multi-modality networks
      ICAFusionRGB+T87.353.464.9
      PCMFNet[39RGB+T91.255.5--
      CFTRGB+T97.563.683.3
      SLBAFRGB+T95.458.834.5
      BaselineRGB+T95.657.1--
      OursRGB+T96.964.1103.3
    • Table 5. Comparison of results of different models on the KAIST dataset

      View table
      View in Article

      Table 5. Comparison of results of different models on the KAIST dataset

      MethodDatamAP50/%FPS
      YOLOv5sRGB57.3103
      YOLOv5sThermal70.2--
      YOLOv7-tinyRGB49.3117.6
      YOLOv7-tinyThermal68.4--
      SLBAFRGB+T71.435.7
      ICAFusionRGB+T71.945.45
      CFTRGB+T72.071.4
      AR-CNNRGB+T75.3--
      MBNetRGB+T75.9--
      BaselineRGB+T72.8--
      OursRGB+T76.2113.6
    Tools

    Get Citation

    Copy Citation Text

    Cuixia GUO, Yongtao XU, Zhanghuang ZOU, Zhijie PAN, Feng HUANG. Lightweight Pedestrian Vehicle Detection Algorithm Based on Visible and Infrared Bimodal Fusion[J]. Acta Photonica Sinica, 2025, 54(6): 0610001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jul. 14, 2025

    The Author Email: Feng HUANG (huangf@fzu.edu.cn)

    DOI:10.3788/gzxb20255406.0610001

    Topics