Piezoelectrics & Acoustooptics, Volume. 44, Issue 1, 111(2022)
Control Method of Wafer Test Process Based on GRU Neural Network
[1] [1] RAKOTONDRABE M.Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J].Automation Science and Engineering,IEEE Transactions on,2011,8(2):428-431.
[2] [2] FUNAHASHI K I.On the approximate realization of continuous mappings by neural networks[J].Neural Networks,1989,2(3):183-192.
[3] [3] ADLY A A,ABD-EL-HAFIZ S K.Using neural networks in the identification of preisach-type hysteresis models[J].IEEE Trans Magn,1998,34(3):629-635.
[4] [4] LI Chuntao,TAN Yonghong.A neural networks model for hysteresis nonlinearity[J].Sensors Actuators A:Phys,2004,112(1):49-54.
[5] [5] DONG R L,TAN Y H,CHEN H,et al.A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J].Sensors Actuators A:Phys,2008,143(2):370-376.
[6] [6] CHENG L,LIU W C,HOU Z G,et al.Neural-network-based nonlinear model predictive control for piezoelectric actuators[J].IEEE Trans Ind Electron,2015,62(12):7717-7727.
[7] [7] WU Y N,FANG Y C,LIU C H,et al.Gated recurrent unit based frequency-dependent hysteresis modeling and end-to-end compensation[J].Mech Syst Signal Process,2020,136:106501.
Get Citation
Copy Citation Text
GUO Daizong, HU Hong. Control Method of Wafer Test Process Based on GRU Neural Network[J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 111
Received: Nov. 1, 2021
Accepted: --
Published Online: Mar. 16, 2022
The Author Email: