Remote Sensing Technology and Application, Volume. 40, Issue 4, 909(2025)

Reviews of Remote Sensing Monitoring of Urban Black and Odorous Water

CHEN Zhenghua1, LAN Sixiang1, ZHANG Jinshui2, ZHANG Wei1, LI Huade1, and ZHAO Lifang3
Author Affiliations
  • 1School of Marine Sciences, Guangxi University, Nanning 530004, China
  • 2State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
  • 3Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • show less
    References(17)

    [3] [3] HU C M, HACKETT K E, CALLAHAN M K,et al. The 2002 ocean color anomaly in the Florida bight: A cause of local coral reef decline [J]. Geophysical Research Letters, 2003, 30(3): 511-514. DOI: 10.1029/2002GL016479

    [4] [4] KUTSER T, PAAVEL B, VERPOORTER C,et al. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters[J]. Remote Sensing, 2016, 8(6): 497. DOI: 10.3390/rs8060497

    [5] [5] KUTSER T, TRANVIK L, PIERSON D C. Variations in colored dissolved organic matter between boreal lakes studied by satellite remote sensing[J]. Journal of Applied Remote Sensing, 2009, 3(1): 33538. DOI: 10.1117/1.3184437

    [6] [6] ZHAO J, HU C M, LAPOINTE B,et al. Satellite-observed black water events off southwest Florida: Implications for coral reef health in the Florida keys national marine sanctuary[J].Remote Sensing, 2013, 5(1): 415-431. DOI: 10.3390/rs5010415

    [28] [28] GORDON H R, WANG M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443-452. DOI: 10.1364/AO.33.000443

    [29] [29] MOBLEY C. Light and Water: Radiative transfer in natural waters [M]. New York: Academic Press, 1994.

    [36] [36] SHEN Q, YAO Y, LI J S,et al. A CIE color purity algorithm to detect black and odorous water in urban rivers using high-resolution multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6577-6590. DOI: 10.1109/TGRS.2019.2907283

    [37] [37] WEI C F, ZHENG Q Y, SHANG Y H,et al. Black and odorous water monitoring by using GF series remote sensing data[C]//Proceedings of the 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2021: 1-6. DOI: 10.1109/agro-geoinformatics50104.2021.9530312

    [41] [41] WEI L F, HUANG C, WANG Z X,et al. Monitoring of urban black-odor water based on nemerow index and gradient boosting decision tree regression using UAV-borne hyperspectral imagery[J]. Remote Sensing, 2019, 11(20): 2402. DOI: 10.3390/rs11202402

    [50] [50] ZHAO Q C, DONG X X, LI G H,et al. Classification and regression tree models for remote recognition of black and odorous water bodies based on sensor networks[J]. Scientific Programming, 2022, 2022(1): 7390098. DOI: 10.1155/2022/7390098

    [53] [53] YU Z F, HUANG Q Y, PENG X X,et al. Comparative study on recognition models of black-odorous water in Hangzhou based on GF-2 satellite data[J]. Sensors, 2022, 22(12): 4593. DOI: 10.3390/s22124593

    [56] [56] WU T X, LI M Y, WANG S D,et al. Urban black-odor water remote sensing mapping based on shadow removal: A case study in Nanjing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9584-9596.

    [57] [57] ZHANG Q, WANG B W, WANG S F,et al. Urban blackodor water body dynamic analysis with high-resolution remote sensing image[J]. IOP Conference Series: Earth and Environmental Science, 2019, 344(1): 012149. DOI: 10.1088/1755-1315/344/1/012149

    [62] [62] ZHOU X Y, HUANG Z Q, WAN Y C,et al. A new method for continuous monitoring of black and odorous water body using evaluation parameters: A case study in Baoding[J]. Remote Sensing, 2022, 14(2): 374. DOI: 10.3390/rs14020374

    [70] [70] YASRAB R, ZHANG J C, SMYTH P,et al. Predicting plant growth from time-series data using deep learning[J]. Remote Sensing, 2021, 13(3): 331. DOI: 10.3390/rs13030331

    [73] [73] HUANG J J, XU J D, CHONG Q P,et al. Black and odorous water detection of remote sensing images based on improved deep learning[J]. Canadian Journal of Remote Sensing, 2023, 49(1): 1-14. DOI: 10.1080/07038992.2023.2237591

    [74] [74] ZHENG G Z, ZHAO Y Y, PAN Z X,et al. Fanet: A deep learning framework for black and odorous water extraction[J].European Journal of Remote Sensing, 2023, 56(1): 22340771-16. DOI: 10.1080/22797254.2023.2234077

    Tools

    Get Citation

    Copy Citation Text

    CHEN Zhenghua, LAN Sixiang, ZHANG Jinshui, ZHANG Wei, LI Huade, ZHAO Lifang. Reviews of Remote Sensing Monitoring of Urban Black and Odorous Water[J]. Remote Sensing Technology and Application, 2025, 40(4): 909

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 16, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2025.4.0909

    Topics