Remote Sensing Technology and Application, Volume. 40, Issue 4, 909(2025)

Reviews of Remote Sensing Monitoring of Urban Black and Odorous Water

Zhenghua CHEN1、*, Sixiang LAN1, Jinshui ZHANG2, Wei ZHANG1, Huade LI1, and Lifang ZHAO3
Author Affiliations
  • 1School of Marine Sciences, Guangxi University, Nanning530004, China
  • 2State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing100875, China
  • 3Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100094, China
  • show less
    Figures & Tables(11)
    Publication of relevant research articles
    Main keyword co-occurrence map
    Color characteristics of GF-2 images of black and odorous water in 2016 and normal water in 2020
    Remote sensing reflectance of black and odorous water and normal water[35]
    Equivalent satellite remote sensing reflectance of black and odorous water and normal water[35]
    The corresponding relationship between black odor degree and water color[18,61]
    • Table 1. Black and odorous water pollution degree classification standard

      View table
      View in Article

      Table 1. Black and odorous water pollution degree classification standard

      特征指标(单位)轻度黑臭重度黑臭
      透明度/cm25~10*<10*
      溶解氧/(mg/L)0.2~2.0<0.2
      氧化还原电位/mV-200~50<-200
      氨氮/(mg/L)8.0~15>15
    • Table 2. Multi-source satellite image parameter comparison table

      View table
      View in Article

      Table 2. Multi-source satellite image parameter comparison table

      序号卫星类型分辨率/m

      幅宽

      /km

      重访周期/天识别像元尺度/个光谱范围/μm参考文献
      全色多光谱蓝波段绿波段红波段近红外全色
      1GF-2 PMS14455≥50.45~0.520.52~0.590.63~0.690.77~0.890.45~0.9[13,15,19,32,43-44]
      2GF-1 PMS28604≥50.45~0.520.52~0.590.63~0.690.77~0.890.45~0.9[12,45-46]
      3GF-6 PMS28≥904≥50.45~0.520.52~0.60.63~0.690.76~0.890.45~0.9[37,47-48]
      4BJ-2 DMC30.83.2241≥50.44~0.510.51~0.590.6~0.670.79~0.910.45~0.65[39,49]
      5ZY-32.15.8505≥50.45~0.520.52~0.590.63~0.690.77~0.890.45~0.8[49]
      6SuperView-10.22122≥50.45~0.520.52~0.590.63~0.690.77~0.890.45~0.89[39,49]
      7GeoEye-10.411.6515.2≤3≥50.45~0.510.51~0.580.655~0.690.78~0.920.45~0.8[39]
      8WorldView-20.461.816.41.1≥50.45~0.510.51~0.580.63~0.690.77~0.8950.45~1.04[39]
      9Planet Scope/324×161~2≥50.455~0.5150.5~0.590.59~0.670.78~0.86/[14,18]
      10Sentinel-2/102905≥50.458~0.5230.543~0.5780.65~0.680.785~0.90/[50-51]
      11Landsat-8153018516≥50.45~0.5150.525~0.60.63~0.680.845~0.8850.5~0.68[52]
    • Table 3. Discrimination model for spectral indices of black and odorous water

      View table
      View in Article

      Table 3. Discrimination model for spectral indices of black and odorous water

      序号指数判别模型公式阈值正确率实验影像实验地点参考文献
      1GreenN1  Rrs(Green)  N2N1=0; N2=0.01950%GF-2南京[13]
      2NIRN1  Rrs(NIR)N1=0.1235.71%Planet Scope钦州[14]
      3DBWIN1  Rrs(Green) - Rrs(Blue)  N2N1=0; N2=0.003 675%GF-2南京[13]
      4HCI1N1  Rrs(Red) + Rrs(NIR) - Rrs(Blue)N1=0.8595.37%GF-2/GF-1北京[45]
      5HCI2N1   Rrs (Red) + Rrs (NIR) - Rrs(Green)N1=0.8793.80%GF-2/GF-1北京[45]
      6BOWRrs(Green) - Rrs(Blue)×Rrs(Green) - Rrs(NIR)  N1N1=0.185.7%GF-2南京[56]
      7NDBWIN1  Rrs(Green) - Rrs(Red)Rrs(Green) + Rrs(Red)  N2N1=0.06;N2=0.115100%GF-2南京[13]
      8BOIN1  RrsGreen - RrsRedRrsBlue + RrsGreen + RrsRed  N2N1=0; N2=0.065100%GF-2沈阳[15]
      9UBOWN1  RrsGreen - RrsRedRrsBlue + RrsGreen + RrsRed  N2N1=0.04; N2=0.0781%GF-2北京[57]
      10HIRrs(Green) - Rrs(Blue)Rrs(Green) + Rrs(Blue)  N1N1=0.06557.14%Planet Scope钦州[14]
      11NDBWIRrs(Blue) + Rrs(Green) + Rrs(Red) - Rrs (NIR)Rrs(Blue) + Rrs(Green) + Rrs(Red) + Rrs (NIR)  N1N1=0.4592.86%Planet Scope钦州[14]
      12BOWIRrs(Green)Rrs(Blue) + Rrs(Red)  N1N1=0.65100%Sentinel-2广州[58]
      13HCI3N1  Rrs(Red) + Rrs (NIR) - Rrs(Blue)Rrs(Red) + Rrs (NIR) + Rrs(Blue)N1=0.489.05%GF-2/GF-1北京[45]
      14HCI4N1  Rrs(Red) + RrsNIR - Rrs(Green)Rrs(Red) + RrsNIR + Rrs(Green)N1=0.4585.42%GF-2/GF-1北京[45]
      15WCIN1  Rrs(Green) - Rrs(Blue)λG - λBRrs(Red) - Rrs(Green)λR - λG  N2N1=0; N2=192.86%GF-1太原[12]
      16BOCI

      N1  Rrs(Green) - R'rs(Green)Rrs(Red)   N2

      R'rs(Green) = Rrs(Blue) + Rrs(Red) - Rrs(Blue) × λG - λBλR - λB

      N1=0.12;

      N2=0.26

      87.18%

      GF-2/ZY-3

      /BJ-2/SV-1

      沈阳[19]
      17BOIM

      N1  Rrs(Red) - R'rs(Green)Rrs(Red) + R'rs(Green)  N2

      R'rs(Green)=Rrs(Blue) + Rrs(Red) - Rrs(Blue) × λG - λBλR - λB

      N1=0.014;

      N2=0.122

      87.88%GF-2哈尔滨[59]
    • Table 4. Remote sensing inversion model of typical water quality parameters

      View table
      View in Article

      Table 4. Remote sensing inversion model of typical water quality parameters

      水质参数反演模型公式参考文献
      Chl-a4.089×b4/b32-0.746×b4/b3+29.733[63,66]
      Chl-a208.39×b4 - b3b4+b32+256.99×b4-b3b4+b3+95.477[35]
      TSS119.62×b3/b26.0823[63,66]
      SDCSD=284.15×CTSS-0.67[63,66]
      CODcr34.038×b3-b4b3+b42-64.448×b3-b4b3+b4+43.441[35]
      CODb3/b2-0.5777/0.007[65]
      DO15.73229-30.80257×b2+b3[65]
      NH3-Nb3/b2-0.661/0.07[65]
    • Table 5. The advantages and disadvantages of urban black and odorous water identification methods

      View table
      View in Article

      Table 5. The advantages and disadvantages of urban black and odorous water identification methods

      方法适用性优点缺点
      光谱指数法适用于简单的水体类型分类简单易行、计算量小;易于理解和应用;可以快速获取黑臭水体的大致位置和分布;成本较低。依赖经验阈值,主观因素影响大;对于复杂的水体环境、混杂的光谱信息,识别精度较低。
      水体色度法适用于颜色变化较为显著的情况颜色直观,可以快速判断色彩异常的水体,初步评估的水质情况。受光照条件影响,难以处理光照变化较大的情况;只能对颜色明显变化的水体有效;不能准确判断黑臭程度和污染源。
      水质参数法适用于需要定量水体污染程度的情况能够提供定量的水质信息和较准确的水质参数估计;更精确地全面评估水体污染程度。部分水质参数的反演模型构建困难;需要实地采样和分析,耗时耗力;对数据要求较高。
      决策树可融合多种特征,适用于实现复杂水体的分类适应能力强,可以处理多个特征之间的复杂关系;人为因素和噪声影响小,具有一定的自动化和可解释性。需要事先建立训练数据集,对于复杂情况可能需要更多的训练样本;模型的构建依赖选择特征的质量,否则容易出现过拟合问题。
      深度学习适用于复杂情况下的黑臭水体分割和分类可以从大量数据中学习复杂的特征表示;具有较高的自动化和预测准确性。需要大量的标注数据进行训练,对计算资源要求较高。
    Tools

    Get Citation

    Copy Citation Text

    Zhenghua CHEN, Sixiang LAN, Jinshui ZHANG, Wei ZHANG, Huade LI, Lifang ZHAO. Reviews of Remote Sensing Monitoring of Urban Black and Odorous Water[J]. Remote Sensing Technology and Application, 2025, 40(4): 909

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2024

    Accepted: --

    Published Online: Aug. 26, 2025

    The Author Email: Zhenghua CHEN (chen.zhenghua@163.com)

    DOI:10.11873/j.issn.1004-0323.2025.4.0909

    Topics