Chinese Journal of Ship Research, Volume. 20, Issue 3, 318(2025)
A detection algorithm for small surface floating objects based on improved YOLOv5s
[1] [1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition. Columbus: IEEE, 2014: 580−587.
[2] [2] GIRSHICK R. Fast RCNN[C]Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440−1448.
[3] [3] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards realtime object detection with region proposal wks[C]Proceedings of the 28th International Conference on Neural Infmation Processing Systems. Montreal: MIT Press, 2015: 91−99.
[4] [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas: IEEE, 2016: 779−788.
[5] [5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 7263−7271.
[6] [6] REDMON J , FARHADI A . YOLOv3: An incremental improvement[J]. arXiv eprints, 2018. DOI: 10.48550arXiv.1804.02767.
[7] [7] BOCHKOVSKIY A , WANG C Y , LIAO H Y M . YOLOv4: optimal speed accuracy of object detection[J]. arXiv eprints, 2020. DOI:10.48550arXiv.2004.10934.
[9] [9] Li C, Li L, Jiang H, et al. YOLOv6: A singlestage object detection framewk f industrial applications[J]. arxiv preprint arxiv:2209.02976, 2022.
[10] [10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bagoffreebies sets new stateoftheart f realtime object detects[C]Proceedings of 2013 IEEECVF Conference on Computer Vision Pattern Recognition. Vancouver: IEEE, 2023: 7464−7475.
[11] [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detect[C]Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21−37.
[12] FU C Y, LIU W, RANGA A et al. DSSD: deconvolutional single shot detector[J]. arxiv preprint arxiv, 06659, 2017(1701).
[13] [13] LIU S T, HUANG D, WANG Y H. Receptive field block f accurate fast object detection[C]Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 385−400.
[14] [14] ZHANG S F, WEN L Y, BIAN X, et al. Singleshot refinement neural wk f object detection[C]Proceedings of 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City: IEEE, 2018: 4203−4212.
[15] [15] REN J, CHEN X H, LIU J B, et al. Accurate single stage detect using recurrent rolling convolution[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 5420−5428.
[23] [23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
[24] [24] ZHOU X, JIANG L, GUAN X J, et al. Infrared small target detection algithm with complex background based on YOLONWD[C]Proceedings of the 4th International Conference on Image Processing Machine Vision. Hong Kong, China: ACM, 2022: 6−12.
[25] [25] CHENG Y W, ZHU J N, JIANG M X, et al. FloW: a dataset benchmark f floating waste detection in inl waters[C]Proceedings of 2021 IEEECVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10953−10962.
Get Citation
Copy Citation Text
Xusheng YUE, Jun LI, Yaohong WANG, Penghao ZHU, Zhexing WANG, Xuanhao XU. A detection algorithm for small surface floating objects based on improved YOLOv5s[J]. Chinese Journal of Ship Research, 2025, 20(3): 318
Category: Weapon, Electronic and Information System
Received: Dec. 19, 2023
Accepted: --
Published Online: Jul. 15, 2025
The Author Email: