Chinese Journal of Ship Research, Volume. 20, Issue 3, 318(2025)

A detection algorithm for small surface floating objects based on improved YOLOv5s

Xusheng YUE1, Jun LI1, Yaohong WANG2, Penghao ZHU3, Zhexing WANG1, and Xuanhao XU1
Author Affiliations
  • 1School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • 2Chongqing Institute of Metrology and Quality Inspection, Chongqing 401123, China
  • 3Zhengzhou Hengda Intelligent Control Technology Co., Ltd., Zhengzhou 450016, China
  • show less
    Figures & Tables(14)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Presets for priori box sizes

      View table
      View in Article

      Table 1. Presets for priori box sizes

      特征图检测对象先验框尺寸
      160×160极小目标(5, 6)(8, 14)(15, 11)
      80×80小目标(10,13)(16,30)(33,23)
      40×40中目标(30,61)(62,45)(59,119)
      20×20大目标(116,90)(156,198)(373,326)
    • Table 2. Comparison of detection layer pruning parameters

      View table
      View in Article

      Table 2. Comparison of detection layer pruning parameters

      网络结构mAP@0.5mAP@0.95ParamsGFLOP
      YOLOv5s0.9310.577701282215.8
      YOLOv5s+SmallTarget0.9410.586715600818.5
      YOLOv5s+SmallTarget_cut0.9510.615265359015.9
    • Table 3. Loss function proportion table

      View table
      View in Article

      Table 3. Loss function proportion table

      比例(IoU∶NWD)mAP@0.5
      3∶70.946
      4∶60.949
      5∶50.955
      6∶40.953
      3∶70.951
    • Table 4. Comparison table of results for original dataset

      View table
      View in Article

      Table 4. Comparison table of results for original dataset

      方法mAP@0.5mAP@0.95
      YOLOv5s0.8970.469
      YOLOv5s+SmallTarget_cut+CBAM+NWD0.9160.484
    • Table 5. Partial experimental parameters

      View table
      View in Article

      Table 5. Partial experimental parameters

      参数数值
      训练轮数epochs300
      批处理尺寸大小 batch size16
      学习率0.01
      优化器SGD
      动量 Momentum0.937
      输入图像大小640×640
    • Table 6. Ablation test results

      View table
      View in Article

      Table 6. Ablation test results

      实验编号方法mAP@0.5mAP@0.95ParamsGFLOP
      AYOLOv5s0.9310.5777 012 82215.8
      BYOLOv5s+SmallTarget_cut0.9510.6152 653 59015.9
      CYOLOv5s+CBAM0.9370.5817 045 68815.9
      DYOLOv5s+NWD0.9370.5877 012 82215.8
      EYOLOv5s+SmallTarget_cut+CBAM0.9540.622 664 63615.9
      FYOLOv5s+SmallTarget_cut+NWD0.9550.6182 653 59015.9
      GYOLOv5s+NWD+CBAM0.9400.5877 045 68815.8
      HYOLOv5s+SmallTarget_cut+CBAM+NWD0.9570.6222 664 63615.9
    • Table 7. Comparison of detection effects for different algorithms

      View table
      View in Article

      Table 7. Comparison of detection effects for different algorithms

      网络结构mAP@0.5mAP@0.95ParamsGFLOP
      YOLOv5s0.9310.577701282215.8
      YOLOv3-tiny0.8940.515866669212.9
      YOLOv5n0.90.51717605184.1
      YOLOv8s0.9490.6771113598728.6
      YOLOv5s+SmallTarget_cut+CBAM+NWD0.9570.622266463615.9
    • Table 8. Comparison of detection accuracy for different algorithms on the Visdrone2019 dataset

      View table
      View in Article

      Table 8. Comparison of detection accuracy for different algorithms on the Visdrone2019 dataset

      方法PedestrainPeopleBicycleCarVanTruckTricycleAwing-tricycleBusMotormAP@0.5
      YOLOv5s0.4060.3210.1150.7290.3570.2720.2050.1000.3970.3810.329
      本文方法0.4110.3280.1130.7400.3590.3120.2400.1260.4830.4030.351
    Tools

    Get Citation

    Copy Citation Text

    Xusheng YUE, Jun LI, Yaohong WANG, Penghao ZHU, Zhexing WANG, Xuanhao XU. A detection algorithm for small surface floating objects based on improved YOLOv5s[J]. Chinese Journal of Ship Research, 2025, 20(3): 318

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Weapon, Electronic and Information System

    Received: Dec. 19, 2023

    Accepted: --

    Published Online: Jul. 15, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03689

    Topics