Chinese Journal of Ship Research, Volume. 19, Issue 2, 81(2024)

Application of expert control-improved S-plane algorithm in motion control of near-surface vehicle

Chao LI, Zifeng SHI, Chengke ZHANG, Yanhui AI, and Huqing SHE
Author Affiliations
  • Yichang Testing Technique Research Institute , Yichang 443003, China
  • show less
    Figures & Tables(10)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Steering rules of front rudder

      View table
      View in Article

      Table 1. Steering rules of front rudder

      策略编号监测量与阈值的关系前舵操舵规律
      1)$ |{\zeta _{\rm{E}}}(k)| > {M_1} $${\delta _{\rm{b}}}(j) = {\delta _{\rm{b}}}_{\max }\dfrac{ {({ {\rm{e} }^{ {k_1}(j){\zeta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} } - { {\rm{e} }^{ - a{k_1}(j){\zeta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} })} }{ {({ {\rm{e} }^{ {k_1}(j){\zeta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} } + { {\rm{e} }^{ - a{k_1}(j){\zeta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} })} } + \Delta u$
      2)-(1)$ {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) > 0 \cap |{\zeta _{\rm{E}}}(j)| \geqslant {M_2} $${\delta _{\rm{b}}}(j)$与1)相同
      2)-(2)$ {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) > 0 \cap |{\zeta _{\rm{E}}}(j)| < {M_2} $${\delta _{\rm{b}}}(j) = {\delta _{\rm{b}}}(j - 1)$
      3)$ \Delta {\zeta _{\rm{E}}}(j) = 0 $${\delta _{\rm{b}}}(j)$与1)相同
      4)$ {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) < 0 \cap (\Delta {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) > 0|{\zeta _{\rm{E}}}(j) = 0) $${\delta _{\rm{b} } }(j) = {\delta _{\rm{b}}}(j - 1)$
      5)-(1)$ {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) < 0 \cap |{\zeta _{\rm{E}}}(j)| \geqslant {M_2} $$\begin{gathered} {\delta _{\rm{b}}}(j) = {\delta _{\rm{b}}}_{\max }\dfrac{ {({ {\rm{e} }^{ {k_1}(j){\zeta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} } - { {\rm{e} }^{ - a{k_1}(j){\zeta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} })} }{ {({ {\rm{e} }^{ {k_1}(j){\zeta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} } + { {\rm{e} }^{ - a{k_1}(j){\zeta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\zeta _{\rm{E} } }(j)/{\rm{d} }t)} })} } + \Delta u + \\ {\text{ } }\qquad\;\;\; k{\textit{z} }(j){\zeta _{\rm{E} } }(j) \\ \end{gathered}$
      5)-(2)$ {\zeta _{\rm{E}}}(j)\Delta {\zeta _{\rm{E}}}(j) < 0 \cap |{\zeta _{\rm{E}}}(j)| < {M_2} $${\delta _{\rm{b}}}(j)$与5)-(1)相同
      (6)$ |{\zeta _{\rm{E}}}(j)| \leqslant \varepsilon $${\delta _{\rm{b}}}(j)$与1)相同
    • Table 2. Steering rules of the aft rudder

      View table
      View in Article

      Table 2. Steering rules of the aft rudder

      策略编号监测量与阈值的关系后舵操舵规律
      1)$ |{\theta _{\rm{E}}}(j)| > {M_1} $${\delta _{\text{s} } }(j) = {\delta _{\rm{s} } }_{\max }\dfrac{ {({ {\rm{e} }^{ {k_1}(j){\theta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} } - { {\rm{e} }^{ - a{k_1}(j){\theta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} })} }{ {({ {\rm{e} }^{ {k_1}(j){\theta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} } + { {\rm{e} }^{ - a{k_1}(j){\theta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} })} } + \Delta u$
      2)-(1)$ {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) > 0 \cap |{\theta _{\rm{E}}}(j)| \geqslant {M_2} $${\delta _{\rm{s}}}(j)$与1)相同
      2)-(2)$ {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) > 0 \cap |{\theta _{\rm{E}}}(j)| < {M_2} $${\delta _{\rm{s} } }(j) = {\delta _{\rm{s}}}(j - 1)$
      3)$ \Delta {\theta _{\rm{E}}}(j) = 0 $${\delta _{\rm{s}}}(j)$与1)相同
      4)$ {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) < 0 \cap (\Delta {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) > 0|{\theta _{\rm{E}}}(j) = 0) $${\delta _{\rm{s}}}(j) = {\delta _{\rm{s}}}(j - 1)$
      5)-(1)$ {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) < 0 \cap |{\theta _{\rm{E}}}(j)| \geqslant {M_2} $$\begin{gathered} {\delta _{\rm{s}}}(j) = {\delta _{\rm{s} } }_{\max }\dfrac{ {({ {\rm{e} }^{ {k_1}(j){\theta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} } - { {\rm{e} }^{ - a{k_1}(j){\theta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} })} }{ {({ {\rm{e} }^{ {k_1}(j){\theta _{\rm{E} } }(j) + {k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} } + { {\rm{e} }^{ - a{k_1}(j){\theta _{\rm{E} } }(j) - a{k_2}(j)({\rm{d} }{\theta _{\rm{E} } }(j)/{\rm{d} }t)} })} } + \Delta u + \\ {\text{ } }\qquad\;\;\; k{\textit{z}}(j){\theta _{\rm{E} } }(j) \\ \end{gathered}$
      5)-(2)$ {\theta _{\rm{E}}}(j)\Delta {\theta _{\rm{E}}}(j) < 0 \cap |{\theta _{\rm{E}}}(j)| < {M_2} $${\delta _{\rm{s}}}(j)$与5)-(1)相同
      (6)$ |{\theta _{\rm{E}}}(j)| \leqslant \varepsilon $${\delta _{\rm{s}}}(j)$与1)相同
    Tools

    Get Citation

    Copy Citation Text

    Chao LI, Zifeng SHI, Chengke ZHANG, Yanhui AI, Huqing SHE. Application of expert control-improved S-plane algorithm in motion control of near-surface vehicle[J]. Chinese Journal of Ship Research, 2024, 19(2): 81

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ship Design and Performance

    Received: Nov. 7, 2022

    Accepted: --

    Published Online: Mar. 18, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03165

    Topics