Journal of Inorganic Materials, Volume. 39, Issue 5, 467(2024)
[1] MIDILLI A, KUCUK H, TOPAL M E et al. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities[J]. International Journal of Hydrogen Energy, 25385(2021).
[2] SHI P D, ZHANG Y, ZHANG G L et al. A crystalline/amorphous CoP@CoB hierarchical core-shell nanorod array for enhanced hydrogen evolution[J]. Journal of Materials Chemistry A, 19719(2021).
[3] HOU Z M, XIONG Y, LUO J S et al. International experience of carbon neutrality and prospects of key technologies: lessons for China[J]. Petroleum Science, 893(2023).
[4] LI H, GUO J, LI Z et al. Research progress of hydrogen production technology and related catalysts by electrolysis of water[J]. Molecules, 5010(2023).
[5] YANG J S, LI J, WANG Y et al. Tailoring the pore structure of porous Ni-Sn alloys for boosting hydrogen evolution reaction in alkali solution[J]. Metals, 2123(2022).
[6] GAO Y C, JIANG J G, MENG Y et al. A review of recent developments in hydrogen production
[7] YAN S, PAN W, CHUN W et al. Electrodeposition of amorphous Ni-Fe-Mo composite as a binder-free and high-performance electrocatalyst for hydrogen generation from alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 33130(2023).
[8] LI H, LU X L, DING H H et al. Copper-doped NiC2S4 nanosheets grown on Ni foam efficient hydrogen evolution catalyst in alkaline solution[J]. ECS Journal of Solid State Science and Technology, 063004(2023).
[10] XU Y, FENG T, WANG Y et al. Constructing bifunctional Fe7S8/CoS heterostructures for efficient water electrolysis[J]. International Journal of Hydrogen Energy, 113(2023).
[11] KADREKAR R, PATEL N, ARYA A. Understanding the role of boron and stoichiometric ratio in the catalytic performance of amorphous Co-B catalyst[J]. Applied Surface Science, 146199(2020).
[12] LONG H Y, GAO D D, WANG P et al. Amorphization-induced reverse electron transfer in NiB cocatalyst for boosting photocatalytic H2 production[J]. Applied Catalysis B-Environmental, 123270(2024).
[13] WANG Y, REN J, MA J et al. Co-Fe-B@g-C3N4/Cu sheet for promoting hydrolytic dehydrogenation from the hydrolysis of NaBH4 solution[J]. Materials Letters, 135099(2023).
[14] LIU H X, LI X Y, CHEN L L et al. Monolithic Ni-Mo-B bifunctional electrode for large current water splitting[J]. Advanced Functional Materials, 21107308(2022).
[15] CHEN Z J, DUAN X G, WEI W et al. Boride-based electrocatalysts: emerging candidates for water splitting[J]. Nano Research, 293(2020).
[16] DOMINIC J, KARTHIKEYAN M, KUMAR K K S. Polyaniline- rare earth metal chloride composites as an adsorbent cum electrode material for supercapacitor performance investigation[J]. Journal of Energy Storage, 103971(2022).
[17] CHEN H, HUANG H B, LI H H et al. Self-supporting Co/CeO2 heterostructures for ampere-level current density alkaline water electrolysis[J]. Inorganic Chemistry, 3297(2023).
[20] CARDOSO D S P, AMARAL L, SANTOS D M F et al. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys[J]. International Journal of Hydrogen Energy, 4295(2015).
[21] WANG X, TANG Y W, LEE J M et al. Recent advances in rare-earth-based materials for electrocatalysis[J]. Chem Catalysis, 967(2022).
[22] XIA B Y, WU H B, WANG X et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 13934(2012).
[23] RYOO R, KIM J, JO C et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis[J]. Nature, 221(2020).
[24] ZHANG G D, DAI J Q, LIANG X L. Enhanced ferroelectric properties in La-doped BiFeO3 films by the sol-gel method[J]. Journal of Sol-Gel Science and Technology, 489(2023).
[26] ANASTASIADOU D, LIGT B, HE Y Y et al. Carbon dioxide and nitrate co-electroreduction to urea on CuO
[27] LEWANDOWSKI M, BARTOSZEWICZ M, JAROSZEWSKA K et al. Transition metal borides of Ni-B (Co-B) as alternative non-precious catalytic materials: advances, potentials, and challenges. Short review[J]. Journal of Industrial and Engineering Chemistry, 75(2022).
[29] LIU W K, CHEN R F, LIU L J et al. Amorphous NiB/carbon nanohybrids: synthesis and catalytic enhancement induced by electron transfer[J]. RSC Advances, 94451(2016).
[31] WANG X, ZHANG J, WANG P et al. Terbium-induced cobalt valence-band narrowing boosts electrocatalytic oxygen reduction[J]. Energy & Environmental Science, 5500(2023).
[32] JOKAR A, TOGHRAEI A, MALEKI M et al. Facile electrochemical synthesis of Ni-Co-B film on Cu sheet for dual-electrocatalysis of hydrogen and oxygen evolution reactions[J]. Electrochimica Acta, 10(2021).
[33] YU S, YANG S, CAI D et al. Regulating
[34] CHEN R J, WU C L, PAN J X et al. Microstructure of electroless Ni-B alloy deposits[J]. Heat Treatment of Metals, 88(2011).
[35] LI X S, ZHOU J, SHEN L Q et al. Exceptionally high saturation magnetic flux density and ultralow coercivity
[36] GAO W, WEN D, HO J C et al. Incorporation of rare earth elements with transition metal-based materials for electrocatalysis: a review for recent progress[J]. Materials Today Chemistry, 266(2019).
[37] ASGARI M, DARBAND G B, MONIRVAGHEFI M. Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient, and durable electrode for electrochemical hydrogen evolution[J]. Electrochimica Acta, 142001(2023).
[38] XU Y F, YANG H W, CHANG X X et al. Introduction to electrocatalytic kinetics[J]. Acta Physico-Chimica Sinica, 2210025(2023).
[39] LIU B, HE J B, CHEN Y J et al. Phytic acid-coated titanium as electrocatalyst of hydrogen evolution reaction in alkaline electrolyte[J]. International Journal of Hydrogen Energy, 3130(2013).
[40] LIN T W, LIU C J, DAI C S. Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection[J]. Applied Catalysis B-Environmental, 213(2014).
[41] PANG Y, ZHU S L, CUI Z D et al. Self-supported amorphous nanoporous nickel-cobalt phosphide catalyst for hydrogen evolution reaction[J]. Progress in Natural Science-Materials International, 201(2021).
[42] WANG A Q, CHEN J, ZHANG P F et al. Relation between NiMo(O) phase structures and hydrogen evolution activities of water electrolysis[J]. Acta Physico-Chimica Sinica, 2301023(2023).
[43] WANG H W, GU X K, ZHENG X S et al. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity[J]. Science Advances(2019).
[44] GUAN Q Q, ZHU C W, LIN Y et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations[J]. Nature Catalysis, 840(2021).
[45] WANG J, SHAO H T, REN S R et al. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction[J]. Applied Surface Science, 148045(2021).
Get Citation
Copy Citation Text
Xinxin JING, Biqing CHEN, Jiaxin ZHAI, Meiling YUAN.
Category:
Received: Oct. 23, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: Biqing CHEN (chenbq2332@163.com)