Journal of Semiconductors, Volume. 40, Issue 7, 071903(2019)
Review on the quantum emitters in two-dimensional materials
[1] J Hours, S Varoutsis, M Gallart et al. Single photon emission from individual GaAs quantum dots. Appl Phys Lett, 82, 2206(2003).
[2] E Stock, T Warming, I Ostapenko et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett, 96, 145(2010).
[3] D Dalacu, P J Poole, R L Williams. Nanowire-based sources of non-classical light. Nanotechnology, 30, 232001(2019).
[4] X Ma, N F Hartmann, J K Baldwin et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nate Nanotechnol, 10, 671(2015).
[5] M Arita, F Le Roux, M J Holmes et al. Ultraclean single photon emission from a GaN quantum dot. Nano Lett, 17, 2902(2017).
[6] I Aharonovich, E Neu. Diamond nanophotonics. Adv Opt Mater, 2, 911(2014).
[7] N Elke, H Christian, H Michael et al. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys, 15, 043005(2013).
[8] I Aharonovich, C Zhou, A Stacey et al. Enhanced single-photon emission in the near infrared from a diamond color center. Phys Rev B, 79, 1377(2009).
[9] S Manzeli, D Ovchinnikov, D Pasquier et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033(2017).
[10] A Srivastava, M Sidler, A V Allain et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 10, 491(2015).
[11] C Chakraborty, K M Goodfellow, V A Nick. Localized emission from defects in MoSe2 layers. Opt Mater Express, 6, 2081(2016).
[12] C Cong, J Shang, Y Wang, T Yu. Optical properties of 2D semiconductor WS2. Adv Opt Mater, 6, 1700767(2018).
[13] H M Hill, A F Rigosi, C Roquelet et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett, 15, 2992(2015).
[14] M Koperski, K Nogajewski, A Arora et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 10, 503(2015).
[15] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 10, 507(2015).
[16] Y Ye, X Dou, K Ding et al. Single photon emission from deep-level defects in monolayer WSe2. Phys Rev B, 95, 245313(2017).
[17] J D Qiao, F H Mei, Y Ye. Single-photon emitters in van der Waals materials. Chin Opt Lett, 17, 020011(2019).
[18] Y M He, G Clark, J R Schaibley et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 10, 497(2015).
[19] P Tonndorf, S Schwarz, J Kern et al. Single-photon emitters in GaSe. 2D Mater, 4, 021010(2017).
[20] N R Jungwirth, B Calderon, Y Ji et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett, 16, 6052(2016).
[21] T T Tran, C Zachreson, A M Berhane et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl, 5, 034005(2016).
[22] B Sontheimer, M Braun, N Nikolay et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys Rev B, 96, 121202(2017).
[23] Z Shotan, H Jayakumar, C R Considine et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics, 3, 2490(2016).
[24] A W Schell, T T Tran, H Takashima et al. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 1, 091302(2016).
[25] R Bourrellier, S Meuret, A Tararan et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 16, 4317(2016).
[26] M Kianinia, B Regan, S A Tawfik et al. Robust solid-state quantum system operating at 800 K. ACS Photonics, 4, 768(2017).
[27] A L Exarhos, D A Hopper, R N Patel et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 10, 222(2019).
[28] C Palacios-Berraquero, D M Kara, A R P Montblanch et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 8, 15093(2017).
[29] A Branny, S Kumar, R Proux et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun, 8, 15053(2017).
[30] Y Xue, H Wang, Q Tan et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano, 12, 7127(2018).
[31] J E Kennard, J P Hadden, L Marseglia et al. On-chip manipulation of single photons from a diamond defect. Phys Rev Lett, 111, 213603(2013).
[32] T T Tran, D Wang, Z Q Xu et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett, 17, 2634(2017).
[33] I Aharonovich, D Englund, M Toth. Solid-state single-photon emitters. Nat Photonics, 10, 631(2016).
[34] F Xia, H Wang, D Xiao et al. Two-dimensional material nanophotonics. Nat Photonics, 8, 899(2014).
[35] R Lv, J A Robinson, R E Schaak et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Accounts Chem Res, 48, 56(2015).
[36] T T Tran, C Elbadawi, D Totonjian et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 10, 7331(2016).
[37] K Watanabe, T Taniguchi, H Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 3, 404(2004).
[38] Q H Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7, 699(2012).
[39] Z Yuan, B E Kardynal, R M Stevenson et al. Electrically driven single-photon source. Science, 295, 102(2002).
[40]
[41] S Schwarz, A Kozikov, F Withers et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 3, 025038(2016).
[42] C Palacios-Berraquero, M Barbone, D M Kara et al. Atomically thin quantum light-emitting diodes. Nat Commun, 7, 12978(2016).
[43] I Hapke-Wurst, U Zeitler, R J Haug et al. Mapping the
[44] G Grosso, H Moon, B Lienhard et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 8, 705(2017).
[45] J Kern, I Niehues, P Tonndorf et al. Nanoscale positioning of single-photon emitters in atomically Thin WSe2. Adv Mater, 28, 7101(2016).
[46] M Aspelmeyer, T J Kippenberg, F Marquardt. Cavity optomechanics. Rev Mod Phys, 86, 1391(2014).
[47] M J Burek, J D Cohen, S M Meenehan et al. Diamond optomechanical crystals. Optica, 3, 1404(2016).
[48] K V Kepesidis, S D Bennett, S Portolan et al. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys Rev B, 88, 064105(2013).
[49] E Togan, Y Chu, A S Trifonov et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466, 730(2010).
[50] X Xu, W Yao, D Xiao et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 10, 343(2014).
[51] X Chen, X Lu, S Dubey et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat Phys, 15, 221(2018).
[52] H Y Zhu, J Yi, M Y Li et al. Observation of chiral phonons. Science, 359, 579(2018).
[53] L Wang, X Xu, L Zhang et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 570, 91(2019).
[54] K Tran, G Moody, F Wu et al. Evidence for moire excitons in van der Waals heterostructures. Nature, 567, 71(2019).
Get Citation
Copy Citation Text
Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(7): 071903
Category: Reviews
Received: Apr. 30, 2019
Accepted: --
Published Online: Sep. 18, 2021
The Author Email: