Chinese Journal of Lasers, Volume. 51, Issue 1, 0101005(2024)

Research Progress in 2-5 μm All‐Solid‐State Mid‐Infrared High‐Power Fiber Laser Sources (Invited)

Jianfeng Li*, Hao Lei, Senyu Wang, Zhuang Wang, Wenbo Zhong, Kunlin Xie, Xinsheng Zhao, and Hongyu Luo
Author Affiliations
  • School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610097, Sichuan , China
  • show less
    References(136)

    [1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [2] Colley C S, Hebden J C, Delpy D T et al. Mid-infrared optical coherence tomography[J]. Review of Scientific Instruments, 78, 123108(2007).

    [3] Neev J, Da Silva L B, Feit M D et al. Ultrashort pulse lasers for hard tissue ablation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 790-800(1996).

    [4] Zorin I, Gattinger P, Prylepa A et al. Time-encoded mid-infrared Fourier-domain optical coherence tomography[J]. Optics Letters, 46, 4108-4111(2021).

    [5] Amrania H, McCrow A P, Matthews M R et al. Ultrafast infrared chemical imaging of live cells[J]. Chemical Science, 2, 107-111(2011).

    [6] Werle P, Slemr F, Maurer K et al. Near- and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 37, 101-114(2002).

    [7] Nejadmalayeri A H, Herman P R, Burghoff J et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses[J]. Optics Letters, 30, 964-966(2005).

    [8] Baranov A N, Teissier R. Quantum cascade lasers in the InAs/AlSb material system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 85-96(2015).

    [9] Vurgaftman I, Bewley W W, Canedy C L et al. Interband cascade lasers with low threshold powers and high output powers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200210(2013).

    [10] Luo H Y, Li S Q, Wu X D et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Optics Letters, 46, 1562-1565(2021).

    [11] Jobin F, Paradis P, Aydin Y O et al. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers[J]. Optics Express, 30, 8615-8640(2022).

    [12] Luo H Y. Research on pulsed mid-infrared fiber laser operating at 2-4 μm[D](2020).

    [13] Xu C J, Zhang J Q, Liu M et al. Recent advances in luminescence and lasing research in ZBYA glass[J]. Optical Materials Express, 12, 1542-1554(2022).

    [14] Liu F, Li J F, Luo H Y et al. Study on soliton self-frequency shift in a Tm-doped fiber amplifier seeded by a Kelly-sideband-suppressed conventional soliton[J]. Optics Express, 29, 6553-6562(2021).

    [15] Yu L P, Liang J H, Huang S T et al. Generation of single solitons tunable from 3 to 3.8 μm in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers[J]. Photonics Research, 10, 2140-2146(2022).

    [16] Woyessa G, Kwarkye K, Dasa M K et al. Power stable 1.5-10.5 µm cascaded mid-infrared supercontinuum laser without thulium amplifier[J]. Optics Letters, 46, 1129-1132(2021).

    [17] Gierschke P, Grebing C, Abdelaal M et al. Nonlinear pulse compression to 51-W average power GW-class 35-fs pulses at 2-µm wavelength in a gas-filled multi-pass cell[J]. Optics Letters, 47, 3511-3514(2022).

    [18] Zhou Z Y, Huang W, Cui Y L et al. 3.1 W mid-infrared fiber laser at 4.16 µm based on HBr-filled hollow-core silica fibers[J]. Optics Letters, 47, 5785-5788(2022).

    [19] Zhou Z Y, Wang Z F, Huang W et al. Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres[J]. Light: Science & Applications, 11, 15(2022).

    [20] Huang W, Cui Y L, Zhou Z Y et al. Towards all-fiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers[J]. Chinese Optics Letters, 17, 091402(2019).

    [21] Henderson-Sapir O, Malouf A, Bawden N et al. Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 6-14(2017).

    [22] Majewski M R, Woodward R I, Jackson S D. Dysprosium mid-infrared lasers: current status and future prospects[J]. Laser & Photonics Reviews, 14, 1900195(2020).

    [23] Luo H Y, Li J F. Progress on mid-infrared mode-locked fluoride fiber lasers[J]. Chinese Journal of Lasers, 49, 0101003(2022).

    [24] Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 17, 948-956(1999).

    [25] Eichhorn M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 93, 269-316(2008).

    [26] Anderson B M, Solomon J, Flores A. 1.1 kW, beam-combinable thulium doped all-fiber amplifier[J]. Proceedings of SPIE, 11665, 116650B(2021).

    [27] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [28] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3 µm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1502309(2015).

    [29] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [30] Hanna D C, Perry I R, Lincoln J R et al. A 1-Watt thulium-doped cw fibre laser operating at 2 μm[J]. Optics Communications, 80, 52-56(1990).

    [31] Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics Letters, 23, 1462-1464(1998).

    [32] Frith G P, Lancaster D G, Jackson S D. 85 W Tm3+-doped 2 µm fibre laser pumped at 793 nm[C], 762-763(2005).

    [33] Meleshkevich M, Platonov N, Gapontsev D et al. 415 W single-mode CW thulium fiber laser in all-fiber format[C](2007).

    [34] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).

    [35] Liu Y Z, Xing Y B, Liao L et al. 530 W all-fiber continuous-wave Tm-doped fiber laser[J]. Acta Physica Sinica, 69, 184209(2020).

    [36] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 24, 935-937(1988).

    [37] Poppe E, Srinivasan B, Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 µm) fibre laser[J]. Electronics Letters, 34, 2331-2333(1998).

    [38] Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-µm fiber laser[J]. Optics Letters, 24, 1133-1135(1999).

    [39] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [40] Chen T T, Li J, Yuan J L et al. 3 µm watt-level all-fiber lasers based on mid-IR dielectric-coated fiber mirrors[J]. Journal of Lightwave Technology, 41, 249-254(2023).

    [41] Wetenkamp L. Efficient CW operation of a 2.9 μm Ho3+-doped fluorozirconate fibre laser pumped at 640 nm[J]. Electronics Letters, 26, 883-884(1990).

    [42] Jackson S D. 210 mW 2.84 μm Ho3+, Pr3+-doped fluoride fibre laser[J]. Electronics Letters, 39, 772-773(2003).

    [43] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 34, 2327-2329(2009).

    [44] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [45] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 41, 2173-2176(2016).

    [46] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [47] Amin M Z, Majewski M R, Woodward R I et al. Novel near-infrared pump wavelengths for dysprosium fiber lasers[J]. Journal of Lightwave Technology, 38, 5801-5808(2020).

    [48] Ososkov Y, Lee J, Fernandez T T et al. High-efficiency fluoroindate glass fiber laser[J]. Optics Letters, 48, 2664-2667(2023).

    [49] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [50] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).

    [51] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [52] Lemieux-Tanguay M, Fortin V, Boilard T et al. 15 W monolithic fiber laser at 3.55 µm[J]. Optics Letters, 47, 289-292(2022).

    [53] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er3+- doped ZrF₄ fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).

    [54] Luo H Y, Wang Y Z, Chen J S et al. Red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber: a promising mid-infrared laser platform[J]. Optics Letters, 47, 5313-5316(2022).

    [55] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [56] Tao M M, Ye X S, Ye J F et al. Modeling In-band pumped kW level high-power Tm-doped fiber lasers via simulations[J]. Chinese Journal of Lasers, 49, 0101019(2022).

    [57] Yin K, Zhang B, Xue G H et al. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm[J]. Optics Express, 22, 19947-19952(2014).

    [58] Zhang W, Zhang J Y, Wu W D et al. Research progress of high power continuous-wave Tm-doped fiber laser[J]. Infrared, 38, 1-7(2017).

    [59] Szlauer R, Götschl R, Razmaria A et al. Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique[J]. European Urology, 55, 368-375(2009).

    [60] Pal A, Chen S Y, Sen R et al. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications[J]. Laser Physics Letters, 10, 085101(2013).

    [61] Phillips C R, Langrock C, Pelc J S et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system[J]. Optics Letters, 36, 3912-3914(2011).

    [62] Kulkarni O P, Alexander V V, Kumar M et al. Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. Journal of the Optical Society of America B, 28, 2486-2498(2011).

    [63] Hanna D C, Jauncey I M, Percival R M et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 24, 1222-1223(1988).

    [64] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C], PD5(1988).

    [65] Tang Y L, Xu J Q, Chen W et al. 150-W Tm3+-doped fiber lasers with different cooling techniques and output couplings[J]. Chinese Physics Letters, 27, 104207(2010).

    [66] Wang X, Zhou P, Wang X L et al. 102 W monolithic single frequency Tm-doped fiber MOPA[J]. Optics Express, 21, 32386-32392(2013).

    [67] Hu Z Y, Yan P, Xiao Q R et al. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm[J]. Chinese Physics B, 23, 104206(2014).

    [68] Liu J, Liu C, Shi H X et al. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser[J]. Acta Physica Sinica, 65, 194209(2016).

    [69] Yao W C, Shao Z H, Shen C F et al. 400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth[C], JTu2A.33(2017).

    [70] Zhu X S, Jain R. Demonstration of >8 Watt output from laser diode pumped mid-infrared fiber lasers[C](2008).

    [71] Pollnau M, Jackson S D. Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers[J]. IEEE Journal of Quantum Electronics, 38, 162-169(2002).

    [72] Golding P S, Jackson S D, King T A et al. Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses[J]. Physical Review B, 62, 856(2000).

    [73] Bernier M, Faucher D, Vallée R et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 32, 454-456(2007).

    [74] Aydın Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency[J]. Optica, 4, 235-238(2017).

    [76] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 83, 1316-1318(2003).

    [77] Tsang Y H, El-Taher A E, King T A et al. Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 µm[J]. Optics Express, 14, 678-685(2006).

    [78] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [79] Wang Y Z, Luo H Y, Gong H T et al. Watt-level and tunable operations of 3 μm-class dysprosium ZrF₄ fiber laser pumped at 1.69 μm[J]. IEEE Photonics Technology Letters, 34, 737-740(2022).

    [80] Többen H. CW lasing at 3.45 µm in erbium-doped fluorozirconate fibres[J]. Frequenz, 45, 250-252(1991).

    [81] Wang S Y, Chen J S, Zhao X S et al. Research progress in 3-5 μm rare earth ion doped mid-infrared fiber lasers(invited)[J]. Infrared and Laser Engineering, 52, 20230215(2023).

    [82] Raman C V. A change of wave-length in light scattering[J]. Nature, 121, 619(1928).

    [83] Woodbury E J, Ng W K. Ruby laser operation in the near IR[J]. Proceedings of IRE, 50, 23652383(1962).

    [84] Jiang H W, Zhang L, Feng Y. Silica-based fiber Raman laser at >2.4 μm[J]. Optics Letters, 40, 3249-3252(2015).

    [85] Jiang H W, Zhang L, Yang X Z et al. Pulsed amplified spontaneous Raman emission at 2.2 μm in silica-based fiber[J]. Applied Physics B, 122, 1-4(2016).

    [86] Du T J, Li Y H, Wang H J et al. 2166 nm all-fiber short-pulsed Raman laser based on germania-core fiber[J]. Optics Express, 27, 34552-34558(2019).

    [87] Liu F, Li J F, Luo H Y et al. Efficient Raman pulse fiber laser pumped by a dissipative soliton resonance pulse near 2 µm[J]. Optics Express, 31, 6741-6749(2023).

    [88] Fortin V, Bernier M, Carrier J et al. Fluoride glass Raman fiber laser at 2185 nm[J]. Optics Letters, 36, 4152-4154(2011).

    [89] Fortin V, Bernier M, Faucher D et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Optics Express, 20, 19412-19419(2012).

    [90] Jiao Y D, Jia Z X, Guo X H et al. Third-order cascaded Raman shift in all-solid fluorotellurite fiber pumped at 1550 nm[J]. Optics Letters, 47, 690-693(2022).

    [91] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 88, 221106(2006).

    [92] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [93] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).

    [94] Wang F, Zhou X, Zhang X N et al. Mid-infrared cascaded stimulated Raman scattering and flat supercontinuum generation in an As-S optical fiber pump at 2 µm[J]. Applied Optics, 60, 6351-6356(2021).

    [95] Zhu G W, Geng L X, Zhu X S et al. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber[J]. Optics Express, 23, 7559-7573(2015).

    [96] Ni C Q, Gao W Q, Chen X C et al. Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber[J]. Applied Optics, 56, 9171-9178(2017).

    [97] Dvoyrin V V, Klimentov D, Sorokina I T. 3 W Raman soliton tunable between 2‒2.2 µm in Tm-doped fiber MOPA[C], MTh1C.2(2013).

    [98] Anashkina E A, Andrianov A V, Koptev M Y et al. Generating femtosecond optical pulses tunable from 2 to 3 μm with a silica-based all-fiber laser system[J]. Optics Letters, 39, 2963-2966(2014).

    [99] Cheng T L, Kanou Y, Asano K et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber[J]. Applied Physics Letters, 104, 121911(2014).

    [100] Salem R, Jiang Z, Liu D F et al. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm[J]. Optics Express, 23, 30592-30602(2015).

    [101] Klimentov D, Dvoyrin V V, Tolstik N et al. Raman soliton fiber lasers tunable between 1.98‒2.22 µm[C], MM6C.2(2016).

    [102] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    [103] Tang Y X, Wright L G, Charan K et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber[J]. Optica, 3, 948-951(2016).

    [104] Wang P, Shi H X, Tan F Z et al. Enhanced tunable Raman soliton source between 1.9 and 2.36 μm in a Tm-doped fiber amplifier[J]. Optics Express, 25, 16643-16651(2017).

    [105] Li Z R, Li N, Yao C F et al. Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 μm in an all-solid fluorotellurite fiber[J]. AIP Advances, 8, 115001(2018).

    [106] Li Y H, Du T J, Xu B et al. Compact all-fiber 2.1-2.7 μm tunable Raman soliton source based on germania-core fiber[J]. Optics Express, 27, 28544-28550(2019).

    [107] Nagl N, Mak K F, Wang Q et al. Efficient femtosecond mid-infrared generation based on a Cr: ZnS oscillator and step-index fluoride fibers[J]. Optics Letters, 44, 2390-2393(2019).

    [108] Tiliouine I, Delahaye H, Granger G et al. Fiber-based source of 500 kW mid-infrared solitons[J]. Optics Letters, 46, 5890-5893(2021).

    [109] Hou Y W, Wu Q, Liu F et al. Numerical demonstration of the soliton self-frequency shift process beyond 8 μm in a tellurite-chalcogenide fiber cascaded structure[J]. IEEE Photonics Journal, 14, 1540412(2022).

    [110] Ge S Y, Wang J, Ren H F et al. High-efficiency tunable femtosecond solitons generation from 1.9 to 2.35 µm in a thulium-doped fiber amplifier via precise seed-pulse management[J]. Optics Express, 30, 3089-3100(2022).

    [111] Gauthier J C, Olivier M, Paradis P et al. Femtosecond tunable solitons up to 4.8 µm using soliton self-frequency shift in an InF3 fiber[J]. Scientific Reports, 12, 15898(2022).

    [112] Chang P F, Luo H Y, Wu Q et al. Tunable mid-infrared Raman soliton generation from 2.80 to 3.17 μm based on fluorotellurite fiber[J]. IEEE Photonics Technology Letters, 34, 1183-1186(2022).

    [113] Saldaña-Díaz J E, Jarabo S, Salgado-Remacha F J. Octave-spanning supercontinuum generation in highly nonlinear silica fibres based on cost-effective fibre amplifiers[J]. Laser Physics Letters, 13, 095102(2016).

    [114] Saldaña-Díaz J E, Jarabo S, Salgado-Remacha F J. Supercontinuum source based on all-silica fibers with optimized spectral power from 1100 up to 2300 nm[J]. Optics & Laser Technology, 117, 73-78(2019).

    [115] Zheng Z J, Ouyang D Q, Wang J Z et al. Supercontinuum generation by using a highly germania-doped fiber with a high-power proportion beyond 2400 nm[J]. IEEE Photonics Journal, 11, 3200508(2019).

    [116] Wang X H, Lei H, Xie K L et al. All-silica fiber ultra-flat 2-3 μm supercontinuum source based on highly nonlinear silica fiber[J]. IEEE Photonics Technology Letters, 35, 381-384(2023).

    [117] Lei H, Xie K L, Wang X H et al. NIR to MIR ultra-broadband supercontinuum laser source based on all-silica fibers[J]. Optics Express, 31, 29403-29410(2023).

    [118] Yin K, Zhang B, Yao J M et al. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 41, 5067-5070(2016).

    [119] Jain D, Sidharthan R, Moselund P M et al. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber[J]. Optics Express, 24, 26667-26677(2016).

    [120] Yin K, Zhang B, Yang L Y et al. 30 W monolithic 2-3 μm supercontinuum laser[J]. Photonics Research, 6, 123-126(2018).

    [121] Wang X, Yao C F, Li P X et al. All-fiber high-power supercontinuum laser source over 3.5 µm based on a germania-core fiber[J]. Optics Letters, 46, 3103-3106(2021).

    [122] Yang L Y, Yang Y K, Zhang B et al. Record power and efficient mid-infrared supercontinuum generation in germania fiber with high stability[J]. High Power Laser Science and Engineering, 10, e36(2022).

    [123] Lei H, Wang X H, Li Z H et al. All-fiber ultra-flat supercontinuum source covering 1.85-3.57 μm based on germania-core fiber[J]. Optics & Laser Technology, 164, 109478(2023).

    [124] Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422-434(2009).

    [125] Yang L Y, Li Y, Zhang B et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 7, 1061-1065(2019).

    [126] Yang L Y, Zhang B, He X et al. 20.6 W mid-infrared supercontinuum generation in ZBLAN fiber with spectrum of 1.9-4.3 μm[J]. Journal of Lightwave Technology, 38, 5122-5127(2020).

    [127] Xia K, Yang L L, Yan B et al. Watt-level ultra-flattened mid-infrared supercontinuum with high power stability generation in an all-fiber structured Tm-doped fiber amplifier pumped ZBLAN single-mode fiber[J]. Optics & Laser Technology, 127, 106204(2020).

    [128] Zhu X R, Zhao D S, Zhang B et al. Spectrally flat mid-infrared supercontinuum pumped by a high power 2 µm noise-like pulse[J]. Optics Express, 31, 13182-13194(2023).

    [129] Jia Z X, Yao C F, Jia S J et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 110, 231106(2017).

    [130] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [131] Li Z R, Jia Z X, Yao C F et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers[J]. Optics Letters, 45, 1882-1885(2020).

    [132] Guo X H, Jia Z X, Jiao Y D et al. 25.8 W all-fiber mid-infrared supercontinuum light sources based on fluorotellurite fibers[J]. IEEE Photonics Technology Letters, 34, 367-370(2022).

    [133] Jiao Y D, Jia Z X, Zhang C Y et al. Over 50 W all-fiber mid-infrared supercontinuum laser[J]. Optics Express, 31, 31082-31091(2023).

    [134] Gauthier J C, Fortin V, Carrée J Y et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 41, 1756-1759(2016).

    [135] Théberge F, Bérubé N, Poulain S et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers[J]. Photonics Research, 6, 609-613(2018).

    [136] Yang L Y, Zhang B, He X et al. High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 µm[J]. Optics Express, 28, 14973-14979(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jianfeng Li, Hao Lei, Senyu Wang, Zhuang Wang, Wenbo Zhong, Kunlin Xie, Xinsheng Zhao, Hongyu Luo. Research Progress in 2-5 μm All‐Solid‐State Mid‐Infrared High‐Power Fiber Laser Sources (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Oct. 10, 2023

    Accepted: Dec. 20, 2023

    Published Online: Jan. 26, 2024

    The Author Email: Li Jianfeng (lijianfeng@uestc.edu.cn)

    DOI:10.3788/CJL231267

    CSTR:32183.14.CJL231267

    Topics