Chinese Journal of Lasers, Volume. 51, Issue 1, 0101005(2024)

Research Progress in 2-5 μm All‐Solid‐State Mid‐Infrared High‐Power Fiber Laser Sources (Invited)

Jianfeng Li*, Hao Lei, Senyu Wang, Zhuang Wang, Wenbo Zhong, Kunlin Xie, Xinsheng Zhao, and Hongyu Luo
Author Affiliations
  • School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610097, Sichuan , China
  • show less
    Figures & Tables(24)
    2-4 μm mid-infrared fiber lasers doped with rare-earth ions. (a) Typical structure of rare-earth doped mid-infrared fiber laser; (b) emission spectra at 2-4 µm band for different transition processes in Tm3+/Ho3+/Er3+/Dy3+-doped silica/fluoride glass[12]; (c) corresponding energy level transition processes
    1100 W cladding-pumped thulium-doped all-fiber amplifier[26]. (a) Laser system; (b) slope efficiency; (c) spectrum at 1.1 kW output power
    High-power dual-end pumped Er3+∶ZBLAN all-fiber laser[27]. (a) Laser system; (b) slope efficiency; (c) output spectra
    High-power 2.9 μm holmium-doped fiber laser[28]. (a) Laser system; (b) slope efficiency; (c) output spectrum; (d) wavelength tunability
    High-power all-fiber 3.24 μm dysprosium-doped fiber laser[29]. (a) Laser system; (b) spectra of high/low reflectivity FBGs; (c) slope efficiency
    High-power all-fiber 3.55 μm erbium-doped fiber laser[52]. (a) Laser system; (b) slope efficiency and output power
    3.92 μm Ho3+-doped fiber laser[55]. (a) Laser system; (b) energy level diagram; (c) slope efficiency and output power
    Cascaded Raman pulsed fiber laser pumped by actively modulated Q-switched pulses[84]. (a) Laser system; (b) laser output spectra at maximum pumping power when pump wavelengths are 2.008 μm and 2.04 μm, respectively
    2231 nm Raman fiber laser with nested cavity structure based on fluoride glass fiber[89]. (a) Experimental setup; (b) output power of 2231 nm Raman laser versus pump power
    Output power versus pump powerwith output spectrum at pump power of 491.5 mW shown in inset[90]
    3.77 μm cascaded Raman fiber laser based on As2S3 fiber[93]. (a) Experimental setup; (b) average output power and peak power of 3.77 μm Stokes light versus pump power when reflectivity values of output coupler are 98%, 92%, and 80%, respectively
    Tunable mid-infrared Raman soliton fiber laser based on InF3 glass fiber[103]. (a) Experimental setup; (b) spectra of redshifted soliton at different wavelengths in 2 m long InF3 glass fiber
    Tunable mid-infrared Raman soliton fiber laser based on Er-doped zirconium fluoride fiber[102]. (a) Experimental setup; (b) SSFS spectra in 22 m long Er-doped zirconium fluoride fiber
    Tunable mid-infrared Raman soliton fiber laser based on InF3 fiber[111]. (a) Experimental setup; (b) output spectrum of InF3 fiber at 70 W pump power
    Schematic of flat supercontinuum laser generation based on NL1550 fiber and indicators[116]. (a) Experimental setup; (b) output power versus pump power; (c) output spectra of NL1550 fiber at different pump powers
    Supercontinuum laser generation diagram and spectral results based on germanate fiber[122]. (a) Experimental setup; (b) output spectra of 20 cm long germania fiber at different pump powers
    Supercontinuum laser system pumped by noise-like pulses[128]. (a) Experimental setup; (b) output spectrum evolution with pump power ; (c) output power versus pump power at different pulse widths
    High power fluorotellurite fiber supercontinuum laser[133]. (a) Experimental setup; (b) spectra of fluorotellurite fiber at different output powers; (c) output power versus pump power
    Supercontinuum laser based on 1.9-4.9 μm InF3 fiber[136]. (a) Experimental setup; (b) supercontinuum spectrum based on InF3 fiber
    • Table 1. Research progress of 2-5 μm fiber lasers doped with rare earth ions

      View table

      Table 1. Research progress of 2-5 μm fiber lasers doped with rare earth ions

      Ionλpμmp /nmλoutput /nmPoutput /Wη /%YearRef.
      Tm3+106420101.3537199030
      Tm3+787200012.238200031
      Tm3+79320408556200532
      Tm3+1567194041560200733
      Tm3+7932045100053.2201034
      Tm3+793198153050202035
      Tm3+7931950110150.7202126
      Er3+476.52702198836
      Er3+98027000.012199837
      Er3+79027101.717.3199938
      Er3+980293830.516201539
      Er3+980282441.622.9201827
      Er3+97628005.732.4202340
      Ho3+6402830-29500.01262.9-4.4199041
      Ho3+/Pr3+110028400.213.2200342
      Ho3+/Pr3+115029402.532200743
      Ho3+/Pr3+11502955-30210.7712.4201144
      Ho3+/Pr3+11502825-29757.229201528
      Dy3+28003.040.0851201645
      Dy3+28303.151.0673201846
      Dy3+8003.020.10518.5202047
      Dy3+28003.2410.158201929
      Dy3+28253.050.3682202348
      Er3+980+19003.50.2625.4201449
      Er3+974+19763.441.519201650
      Er3+980+19003.555.626.4201751
      Er3+980+19003.5514.917.2202252
      Er3+655+19813.51.7231.5202153
      Er3+/Dy3+6593.40.88.8202254
      Ho3+8883.920.210201855
    • Table 2. Typical research progress of mid-infrared Raman fiber lasers

      View table

      Table 2. Typical research progress of mid-infrared Raman fiber lasers

      FiberPump wavelength /μmRaman orderRaman wavelength /μmOutput power /WYearRef.
      GeO2-doped silica fiber2.008,2.0402

      2.20,2.43

      2.24,2.48

      0.350,0.30

      0.384,0.150

      201584
      2.00812.23201685
      1.9812.1660.0526201986
      1.98712.1770.893202387
      Fluoride fiber1.9412.1850.58201188
      1.9812.2313.66201289
      1.553

      1.765,2.049,

      2.438

      0.0141,0.0674,

      0.0316

      202290
      Chalcogenide fiber2.0522.10,2.170.200,0.016200691
      3.0113.340.6201392
      3.0123.34,3.770.112@3.77 μm201493
      262.149-3.425202194
      Tellurite fiber2.823-510201595
      232-545.2@3.64 μm201796
    • Table 3. Typical research progress of mid-infrared tunable Raman soliton fiber lasers

      View table

      Table 3. Typical research progress of mid-infrared tunable Raman soliton fiber lasers

      YearPump laser wavelength /μmFiber

      Tuning

      range /μm

      Output

      power /mW

      Energy /nJ

      Peak

      power /kW

      Ref.
      20131.98TDF2.0-2.2295038191.697
      20141.96GDF2-398
      20142.8AsSe2-As2S52.986-3.41999
      20151.96HNLF1.96-2.1357011.4116.9100
      20161.975TDF1.98-2.2276236180101
      20162.8Er:FGF2.8-3.6210037200102
      20162InF32-4.39.66.445.7103
      20171.92TDF1.92-2.36116034~340104
      20181.96TBY1.96-2.82105
      20191.96TDF+GDF2.036-2.690~6~0.181.23106
      20192.3ZBLAN2.30-3.852.434107
      20211.965ZBLAN2.39-3.1745273108
      20224.1/5.2TBY

      4.10-7.55/

      5.20-8.09

      109
      20221.9TDF1.90-2.351200~2359110
      20222.8InF32.8-4.856.25111
      20222.8TBY2.80-3.1738.90.7447112
    • Table 4. Research progress of supercontinuum lasers based on germanate fibers

      View table

      Table 4. Research progress of supercontinuum lasers based on germanate fibers

      Fiber

      Pump laser

      wavelength /μm

      Supercontinuum

      spectrum range /μm

      Output

      power /W

      YearRef.
      NL15501.551.1-2.22016113
      NL15501.551.1-2.32019114
      UHNA-72.01.92-3.0511.622019115
      NL15501.9-2.61.5-3.24.122022116
      NL15501.5-2.40.92-2.925.092023117
      Germania-core fiber with mole fraction of 100%1.9-2.71.9-3.66.122016118
      Germania-core fiber with mole fraction of 74%1.550.7-3.21.442016119
      Germania-core fiber with mole fraction of 100%21.95-3.030.12018120
      Germania-core fiber with mole fraction of 94%21.7-3.521.342021121
      Germania-core fiber1.9-2.61.9-3.541.92022122
    • Table 5. Research progress of supercontinuum lasers based on fluoride fibers

      View table

      Table 5. Research progress of supercontinuum lasers based on fluoride fibers

      FiberPump laser wavelength /μmSupercontinuum spectrum range /μmOutput power /WYearRef.
      ZBLAN1.540.8-4.010.52009124
      1.9-2.61.90-3.35302019125
      1.9-2.62.0-4.120.62020126
      1.9-2.41.9-4.05.42020127
      21.90-3.6833.12023128
      TBY21.0-3.44.52017129
      1.980.95-3.9310.42018130
      1.93-2.500.90-3.9522.72020131
      1.93-2.500.93-3.9925.82022132
      1.9-2.51.22-3.7450.222023133
      InF32.752.4-5.42016134
      1.8-2.61-512018135
      1.9-2.61.9-4.911.82020136
    Tools

    Get Citation

    Copy Citation Text

    Jianfeng Li, Hao Lei, Senyu Wang, Zhuang Wang, Wenbo Zhong, Kunlin Xie, Xinsheng Zhao, Hongyu Luo. Research Progress in 2-5 μm All‐Solid‐State Mid‐Infrared High‐Power Fiber Laser Sources (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Oct. 10, 2023

    Accepted: Dec. 20, 2023

    Published Online: Jan. 26, 2024

    The Author Email: Li Jianfeng (lijianfeng@uestc.edu.cn)

    DOI:10.3788/CJL231267

    CSTR:32183.14.CJL231267

    Topics