Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0815008(2025)

Dynamic SLAM Algorithm Based on Instance Segmentation and Optical Flow Feature Clustering

Heng Zhang1, Xiaoqiang Zhang1、*, Guanwu Jiang1,2, Zhixin Zhang1, Yang He1, and Xuliang Wang2
Author Affiliations
  • 1School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan , China
  • 2Engineering Research Center for Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100039, China
  • show less
    Figures & Tables(23)
    Overall system framework
    YOLACT network structure
    Potential dynamic object detection and elimination
    Comparison of optical flow feature in different scenes
    Gaussian mixture model based on optical flow feature clustering
    Static key-point filtering
    BEBLID descriptor extraction process
    Match result comparison
    Comparison of trajectory and error between ORB-SLAM2 and proposed algorithm
    Comparison of trajectory and error between DS-SLAM and proposed algorithm
    • Table 1. Matching accuracy comparison

      View table

      Table 1. Matching accuracy comparison

      SequenceBRIEFBEBLID
      f1_xyz71.784.7
      f1_rpy70.481.1
      f1_desk73.381.4
    • Table 2. ATE comparison of YOLACT and ORB-SLAM2

      View table

      Table 2. ATE comparison of YOLACT and ORB-SLAM2

      SequenceORB-SLAM2 /mYOLACT /m
      RMSES.DRMSES.D
      w_half0.69950.26770.02190.0136
      s_static0.00850.00410.00640.0032
    • Table 3. RPE translation of YOLACT and ORB-SLAM2

      View table

      Table 3. RPE translation of YOLACT and ORB-SLAM2

      SequenceORB-SLAM2 /mYOLACT /m
      RMSES.DRMSES.D
      w_half0.05940.05440.01320.0082
      s_static0.00530.00270.00480.0024
    • Table 4. RPE rotation of YOLACT and ORB-SLAM2

      View table

      Table 4. RPE rotation of YOLACT and ORB-SLAM2

      SequenceORB-SLAM2 /(°)YOLACT /(°)
      RMSES.DRMSES.D
      w_half1.28431.13770.42090.2358
      s_static0.16330.08510.16380.0859
    • Table 5. ATE comparison of YOLACT+LK and ORB-SLAM2

      View table

      Table 5. ATE comparison of YOLACT+LK and ORB-SLAM2

      SequenceORB-SLAM2 /mYOLACT+LK /m
      RMSES.DRMSES.D
      w_half0.69950.26770.02060.0116
      s_static0.00850.00410.00590.0032
    • Table 6. RPE translation of YOLACT+LK and ORB-SLAM2

      View table

      Table 6. RPE translation of YOLACT+LK and ORB-SLAM2

      SequenceORB-SLAM2/mYOLACT+LK /m
      RMSES.DRMSES.D
      w_half0.05940.05440.01280.0077
      s_static0.00530.00270.00470.0025
    • Table 7. RPE rotation of YOLACT+LK and ORB-SLAM2

      View table

      Table 7. RPE rotation of YOLACT+LK and ORB-SLAM2

      SequenceORB-SLAM2 /mYOLACT+LK /m
      RMSES.DRMSES.D
      w_half1.28431.13770.41050.2212
      s_static0.16330.08510.15880.0854
    • Table 8. Comparison of ATE between BEBLID and ORB-SLAM2

      View table

      Table 8. Comparison of ATE between BEBLID and ORB-SLAM2

      SequenceORB-SLAM2 /mBEBLID+BOW /m
      RMSES.DRMSES.D
      w_half0.69950.26770.45090.2479
      s_static0.00850.00410.00800.0038
    • Table 9. RPE translation of BEBLID and ORB-SLAM2

      View table

      Table 9. RPE translation of BEBLID and ORB-SLAM2

      SequenceORB-SLAM2 /mBEBLID+BOW /m
      RMSES.DRMSES.D
      w_half0.05940.05440.02340.0151
      s_static0.00530.00270.00430.0021
    • Table 10. RPE rotation of BEBLID and ORB-SLAM2

      View table

      Table 10. RPE rotation of BEBLID and ORB-SLAM2

      SequenceORB-SLAM2 /mBEBLID+BOW /m
      RMSES.DRMSES.D
      w_half1.28431.13770.60430.3454
      s_static0.16330.08510.15660.0808
    • Table 11. ATE comparison results

      View table

      Table 11. ATE comparison results

      SequenceORB-SLAM2 /mDS-SLAM /mDynaSLAM /mBlitz-SLAM /mAlgorithm of reference [12] /mAlgorithm of reference [15] /mProposed algorithm /m
      RMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.D
      w_xyz0.79910.45970.19820.00930.01840.00870.01530.00780.01910.010680.01330.00680.01490.0083
      w_static0.41570.19060.00690.00290.00640.00250.01020.00520.00730.00340.00710.00300.00830.0045
      w_rpy0.69350.32590.15740.09420.04250.02820.03560.02200.40770.20520.02750.01580.02980.0189
      w_half0.69950.26770.03280.01690.02500.01030.02560.01260.02880.01570.02410.01120.01750.0084
      s_static0.00850.00410.00640.00300.00640.00310.00610.00320.00640.00330.00550.0029
    • Table 12. RPE translation part comparison results

      View table

      Table 12. RPE translation part comparison results

      SequenceORB-SLAM2 /mDS-SLAM /mDynaSLAM /mBlitz-SLAM /mAlgorithm of reference [12] /mAlgorithm of reference [15] /mProposed algorithm /m
      RMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.D
      w_xyz0.02700.01590.01510.00990.01960.01210.01970.00960.028080.01520.01790.00900.01290.0082
      w_static0.01560.01140.00710.00430.00740.00400.01290.00690.01050.00470.00920.00480.00580.0037
      w_rpy0.02850.01840.02520.01930.04330.03420.04730.02830.13890.10270.03810.02620.02100.0144
      w_half0.05940.05440.01480.00930.01790.01020.02530.01230.04030.01990.02510.01220.01220.0070
      s_static0.00530.00270.00630.00300.01380.00800.00910.00440.00760.00380.00480.0024
    • Table 13. RPE rotation part comparison results

      View table

      Table 13. RPE rotation part comparison results

      SequenceORB-SLAM2 /(°)DS-SLAM /(°)DynaSLAM /(°)Blitz-SLAM /(°)Algorithm of reference [12] /(°)Algorithm of reference [15] /(°)Proposed algorithm /(°)
      RMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.DRMSES.D
      w_xyz0.64800.39490.86330.60260.59460.34940.61320.33480.71790.45620.40830.2883
      w_static0.31910.20360.16080.08210.21260.12170.30380.14370.28630.12440.18030.0948
      w_rpy0.69060.41260.58470.38121.02390.76421.08410.66682.78032.01330.53780.3684
      w_half1.28431.13770.41480.23300.57350.32850.78790.37510.93020.46320.39250.2063
      s_static0.16330.08510.47660.22460.41460.22130.31620.14100.16100.0838
    Tools

    Get Citation

    Copy Citation Text

    Heng Zhang, Xiaoqiang Zhang, Guanwu Jiang, Zhixin Zhang, Yang He, Xuliang Wang. Dynamic SLAM Algorithm Based on Instance Segmentation and Optical Flow Feature Clustering[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 2, 2024

    Accepted: Oct. 8, 2024

    Published Online: Apr. 14, 2025

    The Author Email: Xiaoqiang Zhang (xqzhang@swust.edu.cn)

    DOI:10.3788/LOP241797

    CSTR:32186.14.LOP241797

    Topics