Chinese Journal of Lasers, Volume. 50, Issue 11, 1101019(2023)

Improved Performances of Lasers on Silicon (001) with Symmetrical Cathode Structures

Bojie Ma1, Jun Wang1、*, Hao Liu1, Chen Jiang1, Zhuoliang Liu1, Hao Zhai1, Jian Li2, Rui Ming1, Qing Ge1, Feng Lin1, Kai Liu1, Qi Wang1, Xin Wei2, Yongqing Huang1, and Xiaomin Ren1
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    References(35)

    [1] Ho R, Mai K W, Horowitz M A. The future of wires[J]. Proceedings of the IEEE, 89, 490-504(2001).

    [2] Davis J A, Venkatesan R, Kaloyeros A et al. Interconnect limits on gigascale integration (GSI) in the 21st century[J]. Proceedings of the IEEE, 89, 305-324(2001).

    [3] Komljenovic T, Huang D N, Pintus P et al. Photonic integrated circuits using heterogeneous integration on silicon[J]. Proceedings of the IEEE, 106, 2246-2257(2018).

    [4] Zhou Z P, Tu Z J, Li T T et al. Silicon photonics for advanced optical interconnections[J]. Journal of Lightwave Technology, 33, 928-933(2015).

    [5] Giewont K, Nummy K, Anderson F A et al. 300-mm monolithic silicon photonics foundry technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 8200611(2019).

    [6] Sato S, Satoh S. 1.21 µm continuous-wave operation of highly strained GaInAs quantum well lasers on GaAs substrates[J]. Japanese Journal of Applied Physics, 38, L990-L992(1999).

    [7] Lott J A, Ledentsov N N, Ustinov V M et al. InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm[J]. Electronics Letters, 36, 1384-1385(2000).

    [8] Chen S M, Li W, Wu J et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 10, 307-311(2016).

    [9] Wang J, Hu H Y, Yin H Y et al. 1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers[J]. Photonics Research, 6, 321-325(2018).

    [10] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [11] Li N G, Liu C, Zhang P F et al. 850 nm single-mode surface-emitting distributed feedback lasers[J]. Chinese Journal of Lasers, 49, 1201006(2022).

    [12] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [13] Zhou Z P, Yin B, Michel J. On-chip light sources for silicon photonics[J]. Light: Science & Applications, 4, e358(2015).

    [14] Németh I, Kunert B, Stolz W et al. Heteroepitaxy of GaP on Si: correlation of morphology, anti-phase-domain structure and MOVPE growth conditions[J]. Journal of Crystal Growth, 310, 1595-1601(2008).

    [15] Chen W R, Wang J, Zhu L N et al. Theoretical and experimental study on epitaxial growth of antiphase boundary free GaAs on hydrogenated on-axis Si(001) surfaces[J]. Journal of Physics D: Applied Physics, 54, 445102(2021).

    [16] Martin M, Caliste D, Cipro R et al. Toward the III-V/Si co-integration by controlling the biatomic steps on hydrogenated Si (001)[J]. Applied Physics Letters, 109, 253103(2016).

    [17] Wei W Q, Wang J H, Zhang B et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm[J]. Applied Physics Letters, 113, 053107(2018).

    [18] Shang C, Selvidge J, Hughes E et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density[J]. Physica Status Solidi (A), 218, 2000402(2020).

    [19] Liu A Y, Peters J, Huang X et al. Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 42, 338-341(2017).

    [20] Shang C, Wan Y T, Norman J C et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1502207(2019).

    [21] Jung D, Norman J, Kennedy M J et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 111, 122107(2017).

    [22] Chen S M, Liao M Y, Tang M C et al. Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 25, 4632-4639(2017).

    [23] Wan Y T, Shang C, Norman J et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1900409(2020).

    [24] Wei W Q, Wang J H, Zhang J Y et al. A CMOS compatible Si template with (111) facets for direct epitaxial growth of Ⅲ-Ⅴ materials[J]. Chinese Physics Letters, 37, 024203(2020).

    [25] Wang Z H, Wei W Q, Feng Q et al. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback[J]. Optics Express, 29, 674-683(2021).

    [26] Selvidge J, Norman J, Hughes E T et al. Defect filtering for thermal expansion induced dislocations in Ⅲ-Ⅴ lasers on silicon[J]. Applied Physics Letters, 117, 122101(2020).

    [27] Shang C, Hughes E, Wan Y T et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters[J]. Optica, 8, 749-754(2021).

    [28] Xiao C, Wang J, Li Jet. Annihilation mechanism of antiphase domain in GaAs/Si (001) materials by molecular beam epitaxy[J]. Chinese Journal of Lasers, 49, 2301006(2022).

    [29] Wang J, Liu Z L, Liu H et al. High slope-efficiency quantum-dot lasers grown on planar exact silicon (001) with asymmetric waveguide structures[J]. Optics Express, 30, 11563-11571(2022).

    [30] Ko Y H, Kim K J, Han W S. Monolithic growth of GaAs laser diodes on Si(001) by optimal AlAs nucleation with thermal cycle annealing[J]. Optical Materials Express, 11, 943-951(2021).

    [31] Jung C, Jäger R, Grabherr M et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 33, 1790-1791(1997).

    [32] Feng M X, Zhang S M, Jiang D S et al. Thermal analysis of GaN laser diodes in a package structure[J]. Chinese Physics B, 21, 084209(2012).

    [33] Wang Z Q, Sheng Z, Li H et al. A thermal-optimal design of SOI-integrated microdisk lasers[J]. Optical and Quantum Electronics, 47, 453-461(2015).

    [34] Dyment J C, Cheng Y C, SpringThorpe A J. Temperature dependence of spontaneous peak wavelength in GaAs and Ga1-xAlxAs electroluminescent layers[J]. Journal of Applied Physics, 46, 1739-1743(1975).

    [35] Jung D, Zhang Z Y, Norman J et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 5, 1094-1100(2018).

    Tools

    Get Citation

    Copy Citation Text

    Bojie Ma, Jun Wang, Hao Liu, Chen Jiang, Zhuoliang Liu, Hao Zhai, Jian Li, Rui Ming, Qing Ge, Feng Lin, Kai Liu, Qi Wang, Xin Wei, Yongqing Huang, Xiaomin Ren. Improved Performances of Lasers on Silicon (001) with Symmetrical Cathode Structures[J]. Chinese Journal of Lasers, 2023, 50(11): 1101019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 27, 2022

    Accepted: Dec. 5, 2022

    Published Online: May. 19, 2023

    The Author Email: Wang Jun (wangjun12@bupt.edu.cn)

    DOI:10.3788/CJL221277

    Topics