Optics and Precision Engineering, Volume. 30, Issue 15, 1836(2022)

Interference lithography of space-variant grating structures by phase modulation

Chang LU1, Fengchuan XU2, Yishen XU1,3,4, Linsen CHEN4, and Yan YE1,3,4、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou25006, China
  • 2Suzhou City University, Suzhou15104, China
  • 3Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou215006, China
  • 4Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
  • show less
    References(40)

    [1] DECKER M, STAUDE I, FALKNER M et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [2] JIN Y, PENNEC Y, BONELLO B et al. Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces[J]. Reports on Progress in Physics Physical Society (Great Britain), 84, 2021Sep6(2021).

    [3] KIM J, YANG Y, BADLOE T et al. Geometric and physical configurations of meta-atoms for advanced metasurface holography[J]. InfoMat, 3, 739-754(2021).

    [4] [4] 4程宏, 李洪涛, 韩彦军, 等. 基于介质超表面的宽谱、大偏转角近红外光束偏转器[J]. 光学 精密工程, 2020, 28(9): 1873-1880. doi: 10.37188/OPE.20202809.1873CHENGH, LIH T, HANY J, et al. Near-infrared beam deflector with broadband and large deflection angle based on dielectric metasurface[J]. Opt. Precision Eng., 2020, 28(9): 1873-1880. (in Chinese). doi: 10.37188/OPE.20202809.1873

    [5] [5] 5王进东, 叶文成, 张伟婷, 等. 超构表面红外分光阵列设计[J]. 光学 精密工程, 2021, 29(4): 674-681. doi: 10.37188/OPE.20212904.0674WANGJ D, YEW CH, ZHANGW T, et al. Design of infrared metasurface splitter arrays[J]. Opt. Precision Eng., 2021, 29(4): 674-681. (in Chinese). doi: 10.37188/OPE.20212904.0674

    [6] CHEN W T, ZHU A Y, CAPASSO F. Flat optics with dispersion-engineered metasurfaces[J]. Nature Reviews Materials, 5, 604-620(2020).

    [7] HE Q, SUN S L, ZHOU L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research (Washington, D C ), 2019, 1849272(2019).

    [8] XIAO S Y, WANG T, LIU T T et al. Active metamaterials and metadevices: a review[J]. Journal of Physics D: Applied Physics, 53, 503002(2020).

    [9] HASMAN E, KLEINER V, BIENER G et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Applied Physics Letters, 82, 328-330(2003).

    [10] FAN Q B, HUO P C, WANG D P et al. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays[J]. Scientific Reports, 7, 45044(2017).

    [11] CHEN X Z, CHEN M, MEHMOOD M Q et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 3, 1201-1206(2015).

    [12] LIN D M, FAN P Y, HASMAN E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [13] LIN D M, HOLSTEEN A L, MAGUID E et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Letters, 16, 7671-7676(2016).

    [14] YAO Z, CHEN Y H. Focusing and imaging of a polarization-controlled bifocal metalens[J]. Optics Express, 29, 3904-3914(2021).

    [15] KOTLYAR V V, NALIMOV A G, STAFEEV S S et al. Thin high numerical aperture metalens[J]. Optics Express, 25, 8158-8167(2017).

    [16] BARACU A M, AVRAM M A, BREAZU C et al. Silicon metalens fabrication from electron beam to UV-nanoimprint lithography[J]. Nanomaterials (Basel, Switzerland), 11, 2329(2021).

    [17] CHEN Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 135, 57-72(2015).

    [18] TOTH M. Advances in gas-mediated electron beam-induced etching and related material processing techniques[J]. Applied Physics A, 117, 1623-1629(2014).

    [19] FALEK E, KATIYI A, GREENBERG Y et al. On-chip metasurface-on-facets for ultra-high transmission through waveguides in near-infrared[J]. Advanced Optical Materials, 9, 2100130(2021).

    [20] SEMPLE M, HRYCIW A C, LI P et al. Patterning of complex, nanometer-scale features in wide-area gold nanoplasmonic structures using helium focused ion beam milling[J]. ACS Applied Materials & Interfaces, 13, 43209-43220(2021).

    [21] PARK M J, JEON K et al. Combining interference lithography and two-photon lithography for fabricating large-area photonic crystal structures with controlled defects[J]. Applied Sciences, 11, 6559(2021).

    [22] SARKAR S, SAMANTA K, JOSEPH J. Study of polarization effects in phase-controlled multi-beam interference lithography towards the realization of sub-micron photonic structures[J]. Journal of Optics, 22(2020).

    [23] WANG L, WANG Z H, YU Y H et al. Laser interference fabrication of large-area functional periodic structure surface[J]. Frontiers of Mechanical Engineering, 13, 493-503(2018).

    [24] LETTRICHOVA I, LAURENCIKOVA A, PUDIS D et al. 2D periodic structures patterned on 3D surfaces by interference lithography for SERS[J]. Applied Surface Science, 461, 171-174(2018).

    [25] ZHANG Z A, DONG L T, DING Y F et al. Micro and nano dual-scale structures fabricated by amplitude modulation in multi-beam laser interference lithography[J]. Optics Express, 25, 29135(2017).

    [26] [26] 26王磊杰, 张鸣, 朱煜. 单体大尺寸高精度全息光栅制造技术综述[J]. 光学 精密工程, 2021, 29(8): 1759-1768. doi: 10.37188/OPE.20212908.1759WANGL J, ZHANGM, ZHUY. Review of monomeric large-size and high precision holographic planar grating manufacturing technology[J]. Opt. Precision Eng., 2021, 29(8): 1759-1768. (in Chinese). doi: 10.37188/OPE.20212908.1759

    [27] XU J, WANG Z B, ZHANG Z A et al. Effective intensity distributions used for direct laser interference exposure[J]. RSC Advances, 5, 54947-54951(2015).

    [28] LEIBOVICI M C R, GAYLORD T K. Photonic-crystal waveguide structure by pattern-integrated interference lithography[J]. Optics Letters, 40, 2806-2809(2015).

    [29] WANG K N, ZHENG J H, LU F Y et al. Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal[J]. Applied Optics, 55, 4952-4957(2016).

    [30] BEHERA S, KUMAR M, JOSEPH J. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography[J]. Optics Letters, 41, 1893-1896(2016).

    [31] LIANG C W, QU T, CAI J X et al. Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography[J]. Optics Express, 26, 8194-8200(2018).

    [32] XUE G P, LU H O, LI X H et al. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography[J]. Optics Express, 28, 2179-2191(2020).

    [33] [33] 33陈林森, 乔文, 叶燕, 等. 面向柔性光电子器件的微纳光制造关键技术与应用[J]. 光学学报, 2021, 41(8): 277-300. doi: 10.3788/AOS202141.0823018CHENL S, QIAOW, YEY, et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 2021, 41(8): 277-300. (in Chinese). doi: 10.3788/AOS202141.0823018

    [34] [34] 34楼益民, 陈林森, 魏国军, 等. 基于连续变频技术的三维图像激光打印方法与系统[J]. 中国激光, 2014, 41(2): 90-93. doi: 10.3788/cjl201441.0209009LOUY M, CHENL S, WEIG J, et al. Method and system of three-dimensional laser printing based on consecutive spatial frequency modulation[J]. Chinese Journal of Lasers, 2014, 41(2): 90-93. (in Chinese). doi: 10.3788/cjl201441.0209009

    [35] [35] 35杨颖. 连续变空频3D图像光刻制版技术与应用[D]. 苏州: 苏州大学, 2016.YANGY. Continuously Variable Spatial Frequency 3D Image Lithography Technology and Application[D]. Suzhou: Soochow University, 2016. (in Chinese)

    [36] WAN W Q, QIAO W, HUANG W B et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views[J]. Optics Express, 24, 6203-6212(2016).

    [37] YE Y, XU F C, WEI G J et al. Scalable Fourier transform system for instantly structured illumination in lithography[J]. Optics Letters, 42, 1978-1981(2017).

    [38] HUA J Y, HUA E K, ZHOU F B et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex[J]. Light: Science & Applications, 10, 213(2021).

    [39] QIAO W, HUANG W B, LIU Y H et al. Toward scalable flexible nanomanufacturing for photonic structures and devices[J]. Advanced Materials, 28, 10353-10380(2016).

    [40] [40] 40叶燕, 许峰川, 魏国军, 等. 实时变参量微纳米光场调制系统和干涉光刻系统: CN105511074B[P]. 2018-01-09.YEY, XUF CH, WEIG J, et al. Real time variable parameter micro-nano optical field modulation system and interference lithography system: CN105511074B[P]. 2018-01-09. (in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Chang LU, Fengchuan XU, Yishen XU, Linsen CHEN, Yan YE. Interference lithography of space-variant grating structures by phase modulation[J]. Optics and Precision Engineering, 2022, 30(15): 1836

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Design,Fabrication and Application of Planar Optical Elements

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Sep. 7, 2022

    The Author Email: Yan YE (yanye@suda.edu.cn)

    DOI:10.37188/OPE.20223000.0144

    Topics