AEROSPACE SHANGHAI, Volume. 42, Issue 4, 16(2025)
Ultra-wide Bandgap β-Ga2O3 Devices:A Review of High-efficiency Innovations in Aerospace Power Electronics and Challenges in Extreme Environments
[1] J WANG. Wide bandgap-based power electronics for aerospace applications. IEEE Power Electronics Magazine, 9, 16-25(2022).
[2] Z MUHAMMAD, Y WANG, Y ZHANG et al. Radiation‐tolerant electronic devices using wide bandgap semiconductors. Advanced Materials Technologies, 8, 2200539(2023).
[3] S J PEARTON, A AITKALIYEVA, M XIAN et al. Radiation damage in wide and ultra-wide bandgap semiconductors. ECS Journal of Solid State Science and Technology, 10(2021).
[4] I C KIZILYALLI, Y A XU, E CARLSON et al. Current and future directions in power electronic devices and circuits based on wide band-gap semiconductors, 417-425(2017).
[5] J MILLAN, P GODIGNON, X PERPIÑÀ et al. A survey of wide bandgap power semiconductor devices. IEEE transactions on Power Electronics, 29, 2155-2163(2013).
[6] P G NEUDECK, R S OKOJIE, L Y CHEN. High-temperature electronics-a role for wide bandgap semiconductors?. Proceedings of the IEEE, 90, 1065-1076(2002).
[7] Y ZHANG, T PALACIOS. (Ultra) wide-bandgap vertical power FinFETs. IEEE Transactions on Electron Devices, 67, 3960-3971(2020).
[8] S DUZELLIER. Radiation effects on electronic devices in space. Aerospace Science and Technology, 9, 93-99(2005).
[9] J M LAUENSTEIN, M C CASEY, R L LADBURY et al. Space radiation effects on SiC power device reliability, 1-8(2021).
[10] J KIM, S J PEARTON, C FARES et al. Radiation damage effects in Ga2O3 materials and devices. Journal of Materials Chemistry C, 7, 10-24(2019).
[11] S WANG, C CHEN, R WANG et al. Application of the third-generation power devices in aerospace power supply, 12166, 2000-2009(2022).
[12] R RAVINDRAN, A M MASSOUD. State-of-the-art DC-DC converters for satellite applications:a comprehensive review. Aerospace, 12, 97(2025).
[13] Y KOBAYASHI, A TOMIKI, S KAWASAKI. Annual deep-space flight operation verification of X-band GaN SSPA. IEEE Transactions on Aerospace and Electronic Systems, 55, 930-938(2018).
[14] Y KOBAYASHI, S KAWASAKI. X-band,15-W-class,highly efficient deep-space GaN SSPA for PROCYON mission. IEEE Transactions on Aerospace and Electronic Systems, 52, 1340-1351(2016).
[15] K QING, Z XUAN et al. Application prospect of SiC power semiconductor devices in spacecraft power systems, 185-190(2017).
[16] X ZHAO, R PHUKAN, C W CHANG et al. Design and implementation of SiC-based 200-kW high-density high-speed high-altitude electric propulsion AC drive system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 12, 5176-5199(2024).
[17] K V AKSHITA, D DHANABALAN, R HARIHARAN et al. Effect of gamma-irradiation on structural,morphological,and optical properties of β-Ga2O3 single crystals. Journal of Materials Science:Materials in Electronics, 34, 841(2023).
[19] J YANG, G J KOLLER, C FARES et al. 60Co gamma ray damage in homoepitaxial β-Ga2O3 Schottky rectifiers. ECS Journal of Solid State Science and Technology, 8(2019).
[20] M LIU, M HUA, X TIAN et al. Effect of gamma irradiation on β-Ga2O3 vertical Schottky barrier diode. Applied Physics Letters, 123, 212103(2023).
[21] W FU, T MA, Z LEI et al. Temperature dependence of total ionizing dose effects of β-Ga2O3 Schottky barrier diodes. Electronics, 13, 2215(2024).
[22] M H WONG, A TAKEYAMA, T MAKINO et al. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation. Applied Physics Letters, 112(2018).
[23] N MANIKANTHABABU, B R TAK, K PRAJNA et al. Radiation sustenance of HfO2/β-Ga2O3 metal-oxide-semiconductor capacitors:gamma irradiation study. Semiconductor Science and Technology, 35(2020).
[24] H J BARDELEBEN, S ZHOU, U GERSTMANN et al. Proton irradiation induced defects in β-Ga2O3:a combined EPR and theory study. APL Materials, 7(2019).
[25] K WANG, R CAO, B MEI et al. Influence of high-dose 80 MeV proton irradiation on the electronic structure and photoluminescence of β-Ga2O3. Journal of Electronic Materials, 52, 7718-7727(2023).
[27] X ZHANG, X LIANG, X LI et al. Radiation damage effects on electronic and optical properties of β-Ga2O3 from first-principles. Journal of Vacuum Science & Technology A, 42(2024).
[28] X LI, W FU, S YUE et al. Effects of 300-MeV proton irradiation on electrical properties of β-Ga2O3 Schottky barrier diodes. IEEE Transactions on Electron Devices, 71, 4549-4555(2024).
[29] J S LI, C C CHIANG, H H WAN et al. Forward bias annealing of proton radiation damage in NiO/Ga2O3 rectifiers. Physica Scripta, 99(2024).
[30] J F MCGLONE, H GHADI, E CORNUELLE et al. Proton radiation effects on electronic defect states in MOCVD-grown (010) β-Ga2O3. Journal of Applied Physics, 133(2023).
[31] G YANG, S JANG, F REN et al. Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors. ACS applied materials & interfaces, 9, 40471-40476(2017).
Get Citation
Copy Citation Text
Yuan LI, Yue HAO, Yuanfu ZHAO, Xiaohua MA, Xuefeng ZHENG, Danning TANG, Weibo JIANG, Chenyang NIU, Xinyue LI. Ultra-wide Bandgap β-Ga2O3 Devices:A Review of High-efficiency Innovations in Aerospace Power Electronics and Challenges in Extreme Environments[J]. AEROSPACE SHANGHAI, 2025, 42(4): 16
Category: Special Paper of Expert
Received: May. 30, 2025
Accepted: --
Published Online: Sep. 29, 2025
The Author Email: