Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 987(2022)

Study on Molecular Beam Epitaxy of High indium InGaAs Films

Ying YANG1,2, Hong-Zhen WANG2, Liu-Yan FAN3, Ping-Ping CHEN3, Bo-Wen LIU2, Xun-Jun HE1、*, Yi GU2、**, Ying-Jie MA2, Tao LI2, Xiu-Mei SHAO2, and Xue LI2
Author Affiliations
  • 1College of Science,Harbin University of Science and Technology,Harbin 150080,China
  • 2State Key Laboratories of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences Shanghai200083,China
  • 3State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences Shanghai200083,China
  • show less
    References(29)

    [1] Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs pin photodiodes using rapid thermal diffusion with spin-on dopant technique[J]. IEEE Electron Device Letters, 36, 820-822(2015).

    [2] Mushini P, Huang W, Morales M et al. 2D SWIR image sensor with extended wavelength cutoff of 2.5 μm on InP/InGaAs epitaxial wafers with graded buffer layers[J]. Infrared Technology and Applications XLII. SPIE, 9819, 78-86(2016).

    [3] Verdun M, Beaudoin G, Portier B et al. Dark current investigation in thin PiN InGaAs photodiodes for nano-resonators[J]. Journal of Applied Physics, 120, 084501(2016).

    [4] Mihalcea R M, Webber M E, Baer D S et al. Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm[J]. Applied Physics B, 67, 283-288(1998).

    [5] Amerov A K, Chen J, Arnold M A. Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum[J]. Applied Spectroscopy, 58, 1195-1204(2004).

    [6] Schrijver H, Goede A P H, Dobber M R et al. Retrieval of carbon monoxide, methane, and nitrous oxide from SCIAMACHY measurements[J]. Optical Remote Sensing of the Atmosphere and Clouds. International Society for Optics and Photonics, 3501, 215-224(1998).

    [7] Yoon H W, Eppeldauer G P. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors[J]. Optics Express, 16, 937-949(2008).

    [8] Ettenberg M H, Nguyen H, Martin C R et al. High resolution 1.3 megapixel extended wavelength InGaAs[J]. Infrared Technology and Applications XLIV. International Society for Optics and Photonics, 10624, 1062404(2018).

    [9] Arslan Y, Oguz F, Besikci C. 640×512 Extended Short Wavelength Infrared In0.83Ga0.17As Focal Plane Array[J]. IEEE Journal of Quantum Electronics, 50, 957-964(2014).

    [10] Cheng J F, Li X, Shao X M et al. 2.45-μm 1280×1024 InGaAs focal plane array with 15-μm pitch for extended SWIR imaging[J]. IEEE Photonics Technology Letters, 34, 231-234(2022).

    [11] Olsen G H, Lange M J, Cohen M J et al. Three-band 1.0-2.5 um near-infrared InGaAs detector array[J]. Infrared Detectors and Focal Plane Arrays III. International Society for Optics and Photonics, 2225, 151-159(1994).

    [12] Liu Ya-Ge, Ma Ying-Jie, Li Xue et al. Noise behaviors of SWIR InxGa1-xAs/InP focal plane arrays as a function of lattice-mismatch degree[J]. Infrared Physics & Technology, 104136(2022).

    [13] Wang H Z, Gu Y, Yu C L et al. Direct correlation of defects and dark currents of InGaAs/InP photodetectors[J]. Materials Science in Semiconductor Processing, 123, 105540(2021).

    [14] Zhang Y G, Gu Y, Zhu C et al. Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors[J]. Infrared Physics & Technology, 47, 257-262(2006).

    [15] Zhang Y G, Gu Y, Wang K et al. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on a linear graded InAlAs buffer[J]. Semiconductor science and technology, 23, 125029(2008).

    [16] Hoogeveen R W M, Goede A P H. Extended wavelength InGaAs infrared (1.0-2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere[J]. Infrared Physics & Technology, 42, 1-16(2001).

    [17] Du B, Gu Y, Zhang Y G et al. Effects of continuously or step-continuously graded buffer on the performance of wavelength extended InGaAs photodetectors[J]. Journal of Crystal Growth, 440, 1-5(2016).

    [18] Zhang Y G, Hao G Q, Gu Y et al. InGaAs photodetectors cut-off at 1.9 μm grown by gas-source molecular beam epitaxy[J]. Chinese Physics Letters, 22, 250(2005).

    [19] Ma Y J, Zhang Y G, Chen X Y et al. A versatile digitally-graded buffer structure for metamorphic device applications[J]. Journal of Physics D: Applied Physics, 51, 145106(2018).

    [20] Gu Y, Zhang Y G, Wang K et al. Effects of growth temperature and buffer scheme on characteristics of InP-based metamorphic InGaAs photodetectors[J]. Journal of Crystal Growth, 378, 65-68(2013).

    [21] Hsieh H K, Chou C, Lin H H et al. Strain relaxation properties of InAsyP1-y metamorphic buffer layers for SWIR InGaAs photodetector[C], 1-3(2018).

    [22] Smiri B, Hidouri T, Saidi F et al. Carriers’ localization and thermal redistribution in InAlAs/InP grown by MOCVD on (311) A-and (311) B-InP substrates[J]. Applied Physics A, 125, 1-6(2019).

    [23] Smiri B, Arbia M B, Ilkay D et al. Optical and structural properties of In-rich InxGa1-xAs epitaxial layers on (1 0 0) InP for SWIR detectors[J]. Materials Science and Engineering: B, 262, 114769(2020).

    [24] Jin X, Pinsukanjana P, Pepper J et al. Ultra low background InGaAs Epi-layer on InP for PIN applications by production MBE[C]. 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004, 48-51(2004).

    [25] Künzel H, Ploog K. The effect of As2 and As4 molecular beam species on photoluminescence of molecular beam epitaxially grown GaAs[J]. Applied Physics Letters, 37, 416-418(1980).

    [26] Ogura T, Nishinaga T. Efficiency difference in Ga adatom incorporation in MBE growth of GaAs with As2 and As4 molecular beams[J]. Journal of Crystal Growth, 211, 416-420(2000).

    [27] Zhang Y G, Gu Yi, Zhu C et al. Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors[J]. Infrared physics & technology, 47, 257-262(2006).

    [28] Takahashi T, Kawano Y, Makiyama K et al. Maximum frequency of oscillation of 1.3 THz obtained by using an extended drain-side recess structure in 75-nm-gate InAlAs/InGaAs high-electron-mobility transistors[J]. Applied Physics Express, 10, 024102(2017).

    [29] Ma Y J, Gu Y, Zhang Y G et al. Carrier scattering and relaxation dynamics in n-type In0.83Ga0.17As as a function of temperature and doping density[J]. Journal of Materials Chemistry C, 3, 2872-2880(2015).

    Tools

    Get Citation

    Copy Citation Text

    Ying YANG, Hong-Zhen WANG, Liu-Yan FAN, Ping-Ping CHEN, Bo-Wen LIU, Xun-Jun HE, Yi GU, Ying-Jie MA, Tao LI, Xiu-Mei SHAO, Xue LI. Study on Molecular Beam Epitaxy of High indium InGaAs Films[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 987

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 5, 2022

    Accepted: --

    Published Online: Feb. 6, 2023

    The Author Email: Xun-Jun HE (hexunjun@hrbust.edu.cn), Yi GU (guyi@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2022.06.007

    Topics