Chinese Optics, Volume. 15, Issue 5, 895(2022)

Recent advances in lateral mode control technology of diode lasers

Li-jie WANG1,2, Cun-zhu TONG1、*, Yan-jing WANG1, Huan-yu LU1, Xin ZHANG1, Si-cong TIAN1, and Li-jun WANG1
Author Affiliations
  • 1State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2Jlight Semiconductor Technology Co., Ltd, Changchun 130031, China
  • show less
    References(101)

    [1] PIETRZAK A, ZORN M, HUELSEWEDE R, et al. Development of highly efficient laser diodes emitting around 1060nm for medical and industrial applications[J]. Proceedings of SPIE, 10900, 109000K(2019).

    [2] LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 37, 50-61(2020).

    [3] [3] STRATEGIES UNLIMITED. The wldwide market f lasers: market review fecast 2020[R]. Nashville, TN: Endeav Business Media, 2020. https:ste.strategiesu.comproductsthewldwidemarketflasersmarketreviewfecast2020.html

    [4] BAUMANN M, BALCK A, MALCHUS J, et al. 1000 W blue fiber-coupled diode-laser emitting at 450 nm[J]. Proceedings of SPIE, 10900, 1090005(2019).

    [5] SKIDMORE J. Semiconductor lasers for 3-D sensing[J]. Optics and Photonics News, 30, 26-33(2019).

    [6] SCHLEUNING D, DROZ P Y. Lidar sensors for autonomous driving[J]. Proceedings of SPIE, 11262, 112620D(2020).

    [7] WENZEL H, CRUMP P, PIETRZAK A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 12, 085007(2010).

    [8] YAMAGATA Y, KAIFUCHI Y, NOGAWA R, et al. Highly efficient 9xx-nm band single emitter laser diodes optimized for high output power operation[J]. Proceedings of SPIE, 11262, 1126203(2020).

    [9] CRUMP P, TRÄNKLE G. A brief history of kilowatt-class diode-laser bars[J]. Proceedings of SPIE, 11301, 113011D(2020).

    [10] HUANG R K, CHANN B, BURGESS J, et al. Teradiode’s high brightness semiconductor lasers[J]. Proceedings of SPIE, 9730, 97300C(2016).

    [11] ZHU H B, LIN X CH, ZHANG Y W, et al. kW-class fiber-coupled diode laser source based on dense spectral multiplexing of an ultra-narrow channel spacing[J]. Optics Express, 26, 24723-24733(2018).

    [12] ALBRODT P, JAMAL M T, HANSEN A K, et al. Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion[J]. Optics Express, 27, 928-937(2019).

    [13] CRUMP P, BÖLDICKE S, SCHULTZ C M, et al. Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers[J]. Semiconductor Science and Technology, 27, 045001(2012).

    [14] WINTERFELDT M, CRUMP P, WENZEL H, et al. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers[J]. Journal of Applied Physics, 116, 063103(2014).

    [15] CRUMP P, ELATTAR M, MIAH J, et al. Experimental studies into the beam parameter product of GaAs high-power diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1501111(2022).

    [16] ZHOU K, DU W CH, YANG X, et al. Effect of lateral index step on the performance of high-power broad-area 970-nm diode lasers based a large-optical-cavity waveguide structure[J]. Proceedings of SPIE, 11333, 113330X(2019).

    [17] RIEPRICH J, WINTERFELDT M, KERNKE R, et al. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers[J]. Journal of Applied Physics, 123, 125703(2018).

    [18] WINTERFELDT M, CRUMP P, KNIGGE S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 27, 1809-1812(2015).

    [19] [19] HOLLY C, LIU X H, HEINEMANN S, et al. . Influence of lateral refractive index profiles on the divergence angle of gainguided broadarea laser diode bars[C]. 2018 IEEE Photonics Conference (IPC), IEEE, 2018: 12.

    [20] RAUCH S, WENZE H, RADZIUNAS M, et al. Impact of longitudinal refractive index change on the near-field width of high-power broad-area diode lasers[J]. Applied Physics Letters, 110, 263504(2017).

    [21] WINTERFELDT M, RIEPRICH J, KNIGGE S, et al. Assessing the influence of the vertical epitaxial layer design on the lateral beam quality of high-power broad area diode lasers[J]. Proceedings of SPIE, 9733, 97330O(2016).

    [22] WANG L J, TONG C ZH, SHU SH L, et al. Loss tailoring of high-power broad-area diode lasers[J]. Optics Letters, 44, 3562-3565(2019).

    [23] CRUMP P, WINTERFELDT M, DECKER J, et al. Novel approaches to increasing the brightness of broad area lasers[J]. Proceedings of SPIE, 9767, 97671L(2016).

    [24] BONI A, ARSLAN S, ERBERT G, et al. Epitaxial design progress for high power, efficiency, and brightness in 970 nm broad area lasers[J]. Proceedings of SPIE, 11668, 1166807(2021).

    [25] MIAH J, KALOSHA V P, BIMBERG D, et al. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile[J]. Optics Express, 24, 30514-30522(2016).

    [26] ZHAO SH Y, QI A Y, WANG M J, et al. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity[J]. Optics Express, 26, 3518-3526(2018).

    [27] SMITH G M, DONNELLY J P, MISSAGGIA L J, et al. Slab-coupled optical waveguide lasers and amplifiers[J]. Proceedings of SPIE, 8241, 82410S(2012).

    [28] KOESTER J P, PUTZ A, WENZEL H, et al. Mode competition in broad-ridge-waveguide lasers[J]. Semiconductor Science and Technology, 36, 015014(2021).

    [29] [29] DECKER J, WINTERFELDT M, FRICKE J, et al. . Study of lateral brightness in 20 μm to 50 μm wide narrow stripe broad area lasers[C]. 2015 IEEE High Power Diode Lasers Systems Conference (HPD), IEEE, 2015: 2122.

    [30] WILKENS M, WENZEL H, FRICKE J, et al. High-efficiency broad-ridge waveguide lasers[J]. IEEE Photonics Technology Letters, 30, 545-548(2018).

    [31] KNIGGE A, KLEHR A, WENZEL H, et al. Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR[J]. Physica Status Solidi, 215, 1700439(2018).

    [32] WANG L J, LI ZH, TONG C ZH, et al. Near-diffraction-limited Bragg reflection waveguide lasers[J]. Applied Optics, 57, F15-F21(2018).

    [33] PASCHKE K, BLUME G, WENZEL H, et al. 635 nm tapered diode lasers with more than 2000 h operation at 500 mW output power[J]. Proceedings of SPIE, 12024, 120240A(2022).

    [34] SUMPF B, THEURER L S, MAIWALD M, et al. 783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power[J]. Applied Optics, 60, 5418-5423(2021).

    [35] DITTMAR F, SUMPF B, FRICKE J, et al. High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M2 = 1.9 at P = 4.4 W[J]. IEEE Photonics Technology Letters, 18, 601-603(2006).

    [36] DITTMAR F, KLEHR A, SUMPF B, et al. 9-W output power from an 808-nm tapered diode laser in pulse mode operation with nearly diffraction-limited beam quality[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1194-1199(2007).

    [37] SUMPF B, HASLER K H, ADAMIEC P, et al. High-brightness quantum well tapered lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 1009-1020(2009).

    [38] MÜLLER A, ZINK C, FRICKE J, et al. Efficient, high brightness 1030 nm DBR tapered diode lasers with optimized lateral layout[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1501107(2017).

    [39] MÜLLER A, ZINK C, FRICKE J, et al. 1030nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of SPIE, 10123, 101231B(2017).

    [40] [40] SUMPF B, HASLER X H, ADAMIEC P, et al. . 12.2 W output power from 1060 nm DBR tapered lasers with narrow spectral line width nearly diffraction limited beam quality[C]. CLEOEuropeEQEC 2009European Conference on Lasers ElectroOptics the European Quantum Electronics Conference, IEEE, 2009: 1.

    [41] AHO A T, VIHERIÄLÄ J, KOSKINEN M, et al. High-power 1.5 μm tapered distributed Bragg reflector laser diodes for eye-safe LIDAR[J]. IEEE Photonics Technology Letters, 32, 1249-1252(2020).

    [42] PFAHLER C, KAUFEL G, KELEMEN M T, et al. GaSb-based tapered diode lasers at 1.93 μm with 1.5-W nearly diffraction-limited power[J]. IEEE Photonics Technology Letters, 18, 758-760(2006).

    [43] GÖKDEN B, MANSURIPUR T S, BLANCHARD R, et al. High-brightness tapered quantum cascade lasers[J]. Applied Physics Letters, 102, 053503(2013).

    [44] SCHWERTFEGER S, WIEDMANN J, SUMPF B, et al. 7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm[J]. Electronics Letters, 42, 346-347(2006).

    [45] WENZEL H, PASCHKE K, BROX O, et al. 10 W continuous-wave monolithically integrated master-oscillator power-amplifier[J]. Electronics Letters, 43, 160-162(2007).

    [46] ZINK C, MAAßDORF A, FRICKE J, et al. Monolithic master oscillator tilted tapered power amplifier emitting 9.5 W at 1060 nm[J]. IEEE Photonics Technology Letters, 32, 59-62(2020).

    [47] VU T N, TIEN T Q, SUMPF B, et al. 16.3 W peak-power pulsed all-diode laser based multi-wavelength master-oscillator power-amplifier system at 964 nm[J]. Applied Sciences, 11, 8608(2021).

    [48] WILKENS M, ERBERT G, WENZEL H, et al. Highly efficient high-brightness 970-nm ridge waveguide lasers[J]. IEEE Photonics Technology Letters, 32, 406-409(2020).

    [49] ZEGHUZI A, CHRISTOPHER H, KLEHR A, et al. High-brightness nanosecond-pulse operation from tapered-ridge-waveguide lasers[J]. IEEE Photonics Technology Letters, 33, 151-154(2021).

    [50] HOHIMER J P, HADLEY G R, OWYOUNG A. Mode control in broad-area diode lasers by thermally induced lateral index tailoring[J]. Applied Physics Letters, 52, 260-262(1988).

    [51] BAI J G, LEISHER P, ZHANG SH G, et al. Mitigation of thermal lensing effect as a brightness limitation of high-power broad area diode lasers[J]. Proceedings of SPIE, 7953, 79531F(2011).

    [52] KIM Y, YANG J T, CHOI W Y. High-power broad-area laser diode performance improvement with a double pedestal structure[J]. Japanese Journal of Applied Physics, 58, 042004(2019).

    [53] KIM Y, SUNG Y, YANG J T, et al. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique[J]. Proceedings of SPIE, 10514, 105140C(2018).

    [54] ZEGHUZI A, RADZIUNAS M, WÜNSCHE H J, et al. Traveling wave analysis of non-thermal far-field blooming in high-power broad-area lasers[J]. IEEE Journal of Quantum Electronics, 55, 2000207(2019).

    [55] CASA P D, MARTIN D, MAAßDORF A, et al. High power broad-area lasers with buried implantation for current confinement[J]. Semiconductor Science and Technology, 34, 105005(2019).

    [56] ELATTAR M, BROX O, CASA P D, et al. High-brightness broad-area diode lasers with enhanced self-aligned lateral structure[J]. Semiconductor Science and Technology, 35, 095011(2020).

    [57] LINDSEY C, DERRY P, YARIV A. Fundamental lateral mode oscillation via gain tailoring in broad area semiconductor lasers[J]. Applied Physics Letters, 47, 560-562(1985).

    [58] MALĄG A, SOBCZAK G, DĄBROWSKA E, et al. Emitted beam stabilization in junction plane by lateral periodic structure in laser diodes emitting at 980 nm[J]. Proceedings of SPIE, 10974, 1097404(2018).

    [59] SHEEM S K, VOJAK B A. Broad-area semiconductor lasers with gain-length variation for lateral mode control: the bow-tie geometry laser[J]. Journal of Applied Physics, 63, 248-250(1988).

    [60] BO B X, GAO X, WANG L, et al. Rhombus-like stripe BA InGaAs-AlGaAs-GaAs lasers[J]. IEEE Photonics Technology Letters, 16, 1248-1249(2004).

    [61] WANG T, TONG C ZH, WANG L J, et al. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation[J]. Applied Physics Express, 9, 112102(2016).

    [62] WANG T, WANG L J, SHU SH L, et al. Suppression of far-field blooming in high-power broad-area diode lasers by optimizing gain distribution[J]. Chinese Optics Letters, 15, 071404(2017).

    [63] WANG T, WANG L J, SHU SH L, et al. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure[J]. Applied Physics Express, 10, 062701(2017).

    [64] LU Z F, WANG L J, ZHANG Y, et al. High-power GaSb-based microstripe broad-area lasers[J]. Applied Physics Express, 11, 032702(2018).

    [65] AHN S, SCHWARZER C, ZEDERBAUER T, et al. High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet[J]. Applied Physics Letters, 104, 051101(2014).

    [66] AHN S, SCHWARZER C, ZEDERBAUER T, et al. Enhanced light output power of quantum cascade lasers from a tilted front facet[J]. Optics Express, 21, 15869-15877(2013).

    [67] HEYDARI D, BAI Y, BANDYOPADHYAY N, et al. High brightness angled cavity quantum cascade lasers[J]. Applied Physics Letters, 106, 091105(2015).

    [68] LU Z F, WANG L J, ZHAO ZH D, et al. Broad-area laser diodes with on-chip combined angled cavity[J]. Chinese Optics Letters, 15, 081402(2017).

    [69] SCIFRES D R, STREIFER W, BURNHAM R D. Curved stripe GaAs: GaAlAs diode lasers and waveguides[J]. Applied Physics Letters, 32, 231-234(1978).

    [70] SWINT R B, YEOH T S, ELARDE V C, et al. Curved waveguides for spatial mode filters in semiconductor lasers[J]. IEEE Photonics Technology Letters, 16, 12-14(2004).

    [71] HOU L P, HAJI M, AKBAR J, et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier[J]. Optics Letters, 37, 4525-4527(2012).

    [72] TAWFIEQ M, FRICKE J, MÜLLER A, et al. Characterisation and comparison between different S-bend shaped GaAs Y-branch distributed Bragg reflector lasers emitting at 976 nm[J]. Semiconductor Science and Technology, 33, 115001(2018).

    [73] FRICKE J, MATALLA M, PASCHKE K, et al. Fabricating and testing of Bragg gratings for 1060-nm α-DFB lasers[J]. Proceedings of SPIE, 4947, 223-231(2003).

    [74] LIU Y, WANG Y F, QU H W, et al. Angled cavity photonic crystal lasers with asymmetrical high-order surface gratings[J]. Applied Physics Express, 10, 032701(2017).

    [75] ZHAO Y S, ZHU L. Folded cavity angled-grating broad-area lasers[J]. Optics Express, 21, 24087-24092(2013).

    [76] LANG R J, MITTELSTEIN M, YARIV A, et al. Unstable resonator semiconductor lasers. Part 1: theory[J]. IEE Proceedings J (Optoelectronics), 134, 69-75(1987).

    [77] YANG C, PAXTON A H, NEWELL T C, et al. On-chip unstable resonator cavity GaSb-based quantum well lasers[J]. Journal of Applied Physics, 121, 143101(2017).

    [78] BIELLAK S A, FANNING C G, SUN Y, et al. Reactive-ion-etched diffraction-limited unstable resonator semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 33, 219-230(1997).

    [79] STRYCKMAN D, ROUSSEAU G, D’AUTEUIL M, et al. Improvement of the lateral-mode discrimination of broad-area diode lasers with a profiled reflectivity output facet[J]. Applied Optics, 35, 5955-5959(1996).

    [80] PAYUSOV A, SERIN A, MUKHIN I, et al. Lateral mode control in edge-emitting lasers with modified mirrors[J]. Journal of Physics:Conference Series, 917, 052035(2017).

    [81] GORDEEV N Y, PAYUSOV A S, MUKHIN I S, et al. Lateral mode discrimination in edge-emitting lasers with spatially modulated facet reflectance[J]. Semiconductors, 53, 200-204(2019).

    [82] [82] RAUCH S, MODAK P, HOLLY C, et al. . Beam quality improvement of broadarea laser diodes by symmetric facet reflectivities[C]. 2018 IEEE International Semiconduct Laser Conference (ISLC), IEEE, 2018: 12.

    [83] MAILHOT S, CHAMPAGNE Y, DOYON B, et al. Lateral mode analysis of a broad-area laser operated with an external cavity[J]. Proceedings of SPIE, 2041, 432-443(1994).

    [84] VIJAYAKUMAR D, JENSEN O B, THESTRUP B. 980 nm high brightness external cavity broad area diode laser bar[J]. Optics Express, 17, 5684-5690(2009).

    [85] ZHAO Y F, SUN F Y, TONG C ZH, et al. Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity[J]. Optics Express, 26, 14058-14065(2018).

    [86] SUN F Y, SHU SH L, ZHAO Y F, et al. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback[J]. Optics Express, 26, 21813-21818(2018).

    [87] SUN F Y, ZHAO Y F, SHU SH L, et al. High beam quality broad-area diode lasers by spectral beam combining with double filters[J]. Chinese Optics Letters, 17, 011401(2019).

    [88] CHOI J M, ZHU L, GREEN W M J, et al. Large-area, semiconductor transverse bragg resonance (TBR) lasers for efficient, high power operation[J]. ICALEO, 2005, 406(2005).

    [89] ZHU L, CHOI J M, DEROSE G A, et al. Electrically pumped two-dimensional Bragg grating lasers[J]. Optics Letters, 31, 1863-1865(2006).

    [90] ZHU L, CHAK P, POON J K S, et al. Electrically-pumped, broad-area, single-mode photonic crystal lasers[J]. Optics Express, 15, 5966-5975(2007).

    [91] ZHU Y Y, ZHAO Y S, ZHU L. Two-dimensional photonic crystal Bragg lasers with triangular lattice for monolithic coherent beam combining[J]. Scientific Reports, 7, 10610(2017).

    [92] FAN J A, BELKIN M A, CAPASSO F, et al. Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression[J]. Applied Physics Letters, 92, 031106(2008).

    [93] WENZEL H, CRUMP P, FRICKE J, et al. Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding[J]. IEEE Journal of Quantum Electronics, 49, 1102-1108(2013).

    [94] KASPI R, LUONG S, BATE T, et al. Distributed loss method to suppress high order modes in broad area quantum cascade lasers[J]. Applied Physics Letters, 111, 201109(2017).

    [95] MIAH M J, STROHMAIER S, URBAN G, et al. Beam quality improvement of high-power semiconductor lasers using laterally inhomogeneous waveguides[J]. Applied Physics Letters, 113, 221107(2018).

    [96] ECKSTEIN H C, ZEITNER U D, TÜNNERMANN A, et al. Mode shaping in semiconductor broad area lasers by monolithically integrated phase structures[J]. Optics Letters, 38, 4480-4482(2013).

    [97] RONG J M, XING E B, ZHANG Y, et al. Low lateral divergence 2 μm InGaSb/ AlGaAsSb broad-area quantum well lasers[J]. Optics Express, 24, 7246-7252(2016).

    [98] XING E B, RONG J M, ZHANG Y, et al. Watt-class low divergence 2 μm GaSb based broad-area quantum well lasers[J]. Journal of Infrared and Millimeter Waves, 36, 280-283(2017).

    [99] RONG J M, XING E B, WANG L J, et al. Control of lateral divergence in high-power, broad-area photonic crystal lasers[J]. Applied Physics Express, 9, 072104(2016).

    [100] SU J X, TONG C ZH, WANG L J, et al. Selective loss tailoring of broad-area diode lasers[J]. Japanese Journal of Applied Physics, 60, 020901(2021).

    [101] SU J X, TONG C ZH, WANG L J, et al. Beam waist shrinkage of high-power broad-area diode lasers by mode tailoring[J]. Optics Express, 28, 13131-13140(2020).

    CLP Journals

    [1] Cui-cui LIU, Nan LIN, Xiao-yu MA, Yue-ming ZHANG, Su-ping LIU. InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions[J]. Chinese Optics, 2023, 16(6): 1512

    Tools

    Get Citation

    Copy Citation Text

    Li-jie WANG, Cun-zhu TONG, Yan-jing WANG, Huan-yu LU, Xin ZHANG, Si-cong TIAN, Li-jun WANG. Recent advances in lateral mode control technology of diode lasers[J]. Chinese Optics, 2022, 15(5): 895

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Jun. 24, 2022

    Accepted: --

    Published Online: Sep. 29, 2022

    The Author Email:

    DOI:10.37188/CO.2022-0143

    Topics