Journal of Semiconductors, Volume. 43, Issue 2, 023101(2022)

A review of compact modeling for phase change memory

Feilong Ding1, Baokang Peng1, Xi Li2, Lining Zhang1, Runsheng Wang3, Zhitang Song2, and Ru Huang3
Author Affiliations
  • 1School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
  • 2Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Institute of Microelectronics, Peking University, Beijing 100871, China
  • show less
    References(81)

    [1] T Kim, S Lee. Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans Electron Devices, 67, 1394(2020).

    [2] M Le Gallo, A Sebastian. An overview of phase-change memory device physics. J Phys D, 53, 213002(2020).

    [3] N B Gong. Multi level cell (MLC) in 3D crosspoint phase change memory array. Sci China Inf Sci, 64, 1(2021).

    [4] S H Lee. Technology scaling challenges and opportunities of memory devices. 2016 IEEE International Electron Devices Meeting (IEDM), 1.1.1(2016).

    [5] D Kau, S Tang, I V Karpov et al. A stackable cross point phase change memory. 2009 IEEE International Electron Devices Meeting, 1(2009).

    [6]

    [7] F Arnaud, P Zuliani, J P Reynard et al. Truly innovative 28nm FDSOI technology for automotive micro-controller applications embedding 16MB phase change memory. 2018 IEEE International Electron Devices Meeting (IEDM), 18.4.1(2018).

    [8] P Cappelletti, R Annunziata, F Arnaud et al. Phase change memory for automotive grade embedded NVM applications. J Phys D, 53, 193002(2020).

    [9]

    [10] R G Neale, D L Nelson, G E Moore. Nonvolatile and reprogramable, read-mostly memory is here. Electronics, 43, 56(1970).

    [11] S Tyson, G Wicker, T Lowrey et al. Nonvolatile, high density, high performance phase-change memory. 2000 IEEE Aerospace Conference, 385(2000).

    [12] S Lai, T Lowrey. OUM – A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. International Electron Devices Meeting, 36.5.1(2001).

    [13] J H Oh, J H Park, Y S Lim et al. Full integration of highly manufacturable 512Mb PRAM based on 90nm technology. 2006 International Electron Devices Meeting, 1(2006).

    [14] R Annunziata, P Zuliani, M Borghi et al. Phase change memory technology for embedded non volatile memory applications for 90nm and beyond. 2009 IEEE International Electron Devices Meeting, 1(2009).

    [15] D H Im, J I Lee, S L Cho et al. A unified 7.5nm dash-type confined cell for high performance PRAM device. 2008 IEEE International Electron Devices Meeting, 1(2008).

    [16] T Kim, H Choi, M Kim et al. High-performance, cost-effective 2z nm two-deck cross-point memory integrated by self-align scheme for 128 Gb SCM. 2018 IEEE International Electron Devices Meeting, 37.1.1(2018).

    [17] W C Chien, Y H Ho, H Y Cheng et al. A novel self-converging write scheme for 2-bits/cell phase change memory for storage class memory (SCM) application. 2015 Symposium on VLSI Technology, T100(2015).

    [18] N Gong, T Idé, S Kim et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat Commun, 9, 2102(2018).

    [19] S Kim, M Ishii, S Lewis et al. NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in situ learning. 2015 IEEE International Electron Devices Meeting, 17.1.1(2015).

    [20] F Bedeschi, R Fackenthal, C Resta et al. A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J Solid State Circuits, 44, 217(2009).

    [21] M N Suri, O Bichler, D Querlioz et al. Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction. 2011 International Electron Devices Meeting, 4.4.1(2011).

    [22] M N Suri, O Bichler, D Querlioz et al. Physical aspects of low power synapses based on phase change memory devices. J Appl Phys, 112, 054904(2012).

    [23] T Tuma, A Pantazi, M Le Gallo et al. Stochastic phase-change neurons. Nat Nanotechnol, 11, 693(2016).

    [24] C D Wright, P Hosseini, J A V Diosdado. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv Funct Mater, 23, 2248(2013).

    [25] Q Wang, G Niu, W Ren et al. Phase change random access memory for neuro-inspired computing. Adv Electron Mater, 7, 2001241(2021).

    [26] P Pavan, L Larcher, A Marmiroli. Floating gate devices: Operation and compact modeling. IEEE Circuits and Devices Magazine, 120(2004).

    [27] Z H Xu, K B Sutaria, C G Yang et al. Hierarchical modeling of Phase Change memory for reliable design. 2012 IEEE 30th International Conference on Computer Design, 115(2012).

    [28] A Sebastian, M Le Gallo, G W Burr et al. Tutorial: Brain-inspired computing using phase-change memory devices. J Appl Phys, 124, 111101(2018).

    [29] H S P Wong, S Raoux, S Kim et al. Phase change memory. Proc IEEE, 98, 2201(2010).

    [30] S Raoux, W Wełnic, D Ielmini. Phase change materials and their application to nonvolatile memories. Chem Rev, 110, 240(2010).

    [31] W Zhang, R Mazzarello, M Wuttig et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater, 4, 150(2019).

    [32] W Zhang, R Mazzarello, E Ma. Phase-change materials in electronics and photonics. MRS Bull, 44, 686(2019).

    [33] D L Eaton. Electrical conduction anomaly of semiconducting glasses in the system As-Te-I. J Am Ceram Soc, 47, 554(1964).

    [34] A Pirovano, A L Lacaita, A Benvenuti et al. Electronic switching in phase-change memories. IEEE Trans Electron Devices, 51, 452(2004).

    [35] D Ielmini. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys Rev B, 78, 035308(2008).

    [36] C B Peng, L Cheng, M Mansuripur. Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J Appl Phys, 82, 4183(1997).

    [37] A L Lacaita, D Ielmini, D Mantegazza. Status and challenges of phase change memory modeling. Solid State Electron, 52, 1443(2008).

    [38] Z J Li, R G D Jeyasingh, J Lee et al. Electrothermal modeling and design strategies for multibit phase-change memory. IEEE Trans Electron Devices, 59, 3561(2012).

    [39] A Redaelli, A Pirovano, A Benvenuti et al. Threshold switching and phase transition numerical models for phase change memory simulations. J Appl Phys, 103, 111101(2008).

    [40] B Schmithusen, P Tikhomirov, E Lyumkis. Phase-change memory simulations using an analytical phase space model. 2008 International Conference on Simulation of Semiconductor Processes and Devices, 57(2008).

    [41] M C Weinberg, D P III Birnie, V A III Shneidman. Crystallization kinetics and the JMAK equation. J Non Cryst Solids, 219, 89(1997).

    [42] W A Johnson, R F Mehl. Reaction kinetics in processes of nucleation and growth. Trans Amn Instit Mining Metall Eng, 135, 416(1939).

    [43] S Senkader, C D Wright. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J Appl Phys, 95, 504(2003).

    [44] Z Q Chen, H Tong, W Cai et al. Modeling and simulations of the integrated device of phase change memory and ovonic threshold switch selector with a confined structure. IEEE Trans Electron Devices, 68, 1616(2021).

    [45] R A Cobley, C D Wright. Parameterized SPICE model for a phase-change RAM device. IEEE Trans Electron Devices, 53, 112(2006).

    [46] X Q Wei, L P Shi, R Walia et al. HSPICE macromodel of PCRAM for binary and multilevel storage. IEEE Trans Electron Devices, 53, 56(2006).

    [47] R A Cobley, C D Wright, Diosdado J A Vázquez. A model for multilevel phase-change memories incorporating resistance drift effects. IEEE J Electron Devices Soc, 3, 15(2015).

    [48] R A Cobley, H Hayat, C D Wright. A self-resetting spiking phase-change neuron. Nanotechnology, 29, 195202(2018).

    [49] K C Kwong, L Li, J He et al. Verilog-A model for phase change memory simulation. 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, 492(2008).

    [50] P Fantini, A Benvenuti, A Pirovano et al. A compact model for Phase Change Memories. 2006 International Conference on Simulation of Semiconductor Processes and Devices, 162(2006).

    [51] D Ventrice, P Fantini, A Redaelli et al. A phase change memory compact model for multilevel applications. IEEE Electron Device Lett, 28, 973(2007).

    [52] K Sonoda, A Sakai, M Moniwa et al. A compact model of phase-change memory based on rate equations of crystallization and amorphization. IEEE Trans Electron Devices, 55, 1672(2008).

    [53] C Pigot, M Bocquet, F Gilibert et al. Comprehensive phase-change memory compact model for circuit simulation. IEEE Trans Electron Devices, 65, 4282(2018).

    [54] N Xu, J Wang, Y X Deng et al. Multi-domain compact modeling for GeSbTe-based memory and selector devices and simulation for large-scale 3-D cross-point memory arrays. 2016 IEEE International Electron Devices Meeting, 7.7.1(2016).

    [55] A Calderoni, M Ferro, D Ventrice et al. Physical modeling and control of switching statistics in PCM arrays. 2011 3rd IEEE Int Mem Work IMW, 1(2011).

    [56] S Yoo, H D Lee, S Lee et al. Electro-thermal model for thermal disturbance in cross-point phase-change memory. IEEE Trans Electron Devices, 67, 1454(2020).

    [57] D Ielmini, D Mantegazza, A L Lacaita. Voltage-controlled relaxation oscillations in phase-change memory devices. IEEE Electron Device Lett, 29, 568(2008).

    [58] M Nardone, V G Karpov, I V Karpov. Relaxation oscillations in chalcogenide phase change memory. J Appl Phys, 107, 054519(2010).

    [59] M Nardone, V G Karpov, D C S Jackson et al. A unified model of nucleation switching. Appl Phys Lett, 94, 103509(2009).

    [60] H F Hu, D Y Liu, X H Chen et al. A compact phase change memory model with dynamic state variables. IEEE Trans Electron Devices, 67, 133(2020).

    [61] P E Schmidt, R C Callarotti. Theoretical and experimental study of the operation of ovonic switches in the relaxation oscillation mode. I. The charging characteristic during the off state. J Appl Phys, 55, 3144(1984).

    [62] M Anbarasu, M Wimmer, G Bruns et al. Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl Phys Lett, 100, 143505(2012).

    [63] G W Burr, R S Shenoy, K Virwani et al. Access devices for 3D crosspoint memory. J Vac Sci Technol B, 32, 040802(2014).

    [64] M J Lee, D Lee, H Kim et al. Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. 2012 International Electron Devices Meeting, 2.6.1(2012).

    [65] K Ren, X Duan, Q Q Xiong et al. Constructing reliable PCM and OTS devices with an interfacial carbon layer. J Mater Sci: Mater Electron, 30, 20037(2019).

    [66] X H Chen, F L Ding, X Q Huang et al. A robust and efficient compact model for phase-change memory circuit simulations. IEEE Trans Electron Devices, 68, 4404(2021).

    [67] S R Nandakumar, M Le Gallo, I Boybat et al. A phase-change memory model for neuromorphic computing. J Appl Phys, 124, 152135(2018).

    [68] X H Chen, H F Hu, X Q Huang et al. A SPICE model of phase change memory for neuromorphic circuits. IEEE Access, 8, 95278(2020).

    [69] M Le Gallo, T Tuma, F Zipoli et al. Inherent stochasticity in phase-change memory devices. 2016 46th European Solid-State Device Research Conference, 373(2016).

    [70] I Boybat, M Le Gallo, S R Nandakumar et al. Neuromorphic computing with multi-memristive synapses. Nat Commun, 9, 2514(2018).

    [71] M Boniardi, D Ielmini. Physical origin of the resistance drift exponent in amorphous phase change materials. Appl Phys Lett, 98, 243506(2011).

    [72] M Boniardi, D Ielmini, S Lavizzari et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans Electron Devices, 57, 2690(2010).

    [73] U Russo, D Ielmini, A Redaelli et al. Intrinsic data retention in nanoscaled phase-change memories—part I: Monte Carlo model for crystallization and percolation. IEEE Trans Electron Devices, 53, 3032(2006).

    [74] K Kim, S J Ahn. Reliability investigations for manufacturable high density PRAM. 2005 IEEE International Reliability Physics Symposium, 157(2005).

    [75] B Gleixner, F Pellizzer, R Bez. Reliability characterization of phase change memory. 2009 10th Annual Non-Volatile Memory Technology Symposium, 7(2009).

    [76] T Y Yang, J Y Cho, Y J Park et al. Effects of dopings on the electric-field-induced atomic migration and void formation in Ge2Sb2Te5. 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 1(2011).

    [77] A Pirovano, A L Lacaita, A Benvenuti et al. Scaling analysis of phase-change memory technology. 2003 IEEE International Electron Devices Meeting, 29.6.1(2003).

    [78] A Pirovano, A L Lacaita, F Pellizzer et al. Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans Electron Devices, 51, 714(2004).

    [79] W W Koelmans, A Sebastian, V P Jonnalagadda et al. Projected phase-change memory devices. Nat Commun, 6, 1(2015).

    [80] I Giannopoulos, A Sebastian, M Le Gallo et al. 8-bit precision in-memory multiplication with projected phase-change memory. 2018 IEEE International Electron Devices Meeting, 27.7.1(2018).

    [81] A Redaelli, D Ielmini, U Russo et al. Intrinsic data retention in nanoscaled phase-change memories—part II: Statistical analysis and prediction of failure time. IEEE Trans Electron Devices, 53, 3040(2006).

    Tools

    Get Citation

    Copy Citation Text

    Feilong Ding, Baokang Peng, Xi Li, Lining Zhang, Runsheng Wang, Zhitang Song, Ru Huang. A review of compact modeling for phase change memory[J]. Journal of Semiconductors, 2022, 43(2): 023101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 24, 2021

    Accepted: --

    Published Online: Feb. 16, 2022

    The Author Email:

    DOI:10.1088/1674-4926/43/2/023101

    Topics