Laser & Optoelectronics Progress, Volume. 56, Issue 11, 110003(2019)

Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect

Lin Han1、*, Yige Lin2, Jing Yang1, Yingjie Lan1, Ye Li2, Xiaojun Wang1, Yong Bo1, and Qinjun Peng1
Author Affiliations
  • 1 Research Center of Laser Physics and Technology, Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2 Time and Frequency Division, National Institute of Metrology, Beijing 100029, China
  • show less
    References(98)

    [1] Pollnau M, Bernhardi E H, Worhoff K et al. Dual-wavelength narrow-linewidth lasers and their applications. [C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, ATu1A, 6(2013).

         Pollnau M, Bernhardi E H, Worhoff K et al. Dual-wavelength narrow-linewidth lasers and their applications. [C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, ATu1A, 6(2013).

    [2] Becker A, Sichkovskyi V, Rippien A et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication. [C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 18, 134-136(2017).

         Becker A, Sichkovskyi V, Rippien A et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication. [C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 18, 134-136(2017).

    [7] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

         Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [13] Cone R L, Thiel C W, Sun Y C et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials. [C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, LTu1G, 3(2013).

         Cone R L, Thiel C W, Sun Y C et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials. [C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, LTu1G, 3(2013).

    [14] Michael J T, Lars R, Tara M F et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 5, 688-673(2011).

         Michael J T, Lars R, Tara M F et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 5, 688-673(2011).

    [15] Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 15, 033006(2013).

         Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 15, 033006(2013).

    [18] Rippe L, Julsgaard B, Walther A et al. -11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.(2006).

         Rippe L, Julsgaard B, Walther A et al. -11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.(2006).

    [23] Böttger T, Sun Y, Pryde G J et al. nm[J]. Journal of Luminescence, 2001, 94/95, 565-568(1536).

         Böttger T, Sun Y, Pryde G J et al. nm[J]. Journal of Luminescence, 2001, 94/95, 565-568(1536).

    [43] Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 26, 379-382(2000).

         Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 26, 379-382(2000).

    [45] Wang W. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology(2013).

         Wang W. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology(2013).

    [46] Fan X L. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology(2016).

         Fan X L. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology(2016).

    [49] Han L, Bo Y, Yang J et al. -08-18(2017).

         Han L, Bo Y, Yang J et al. -08-18(2017).

    Tools

    Get Citation

    Copy Citation Text

    Lin Han, Yige Lin, Jing Yang, Yingjie Lan, Ye Li, Xiaojun Wang, Yong Bo, Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 22, 2018

    Accepted: Jan. 7, 2019

    Published Online: Jun. 13, 2019

    The Author Email: Lin Han (hanlin@mail.ipc.ac.cn)

    DOI:10.3788/LOP56.110003

    Topics