Chinese Journal of Lasers, Volume. 49, Issue 10, 1002402(2022)
Laser Microwelding Technology and Equipment for Cross-Scale Collimator Grid of Deep-Space Exploration Satellite
[1] Lu F J, Xu Y P, Zhang F et al. Hard X-ray Modulation Telescope satellite and its scientific objectives[J]. Modern Physics, 28, 4-11(2016).
[2] Zhang S N. Development prospect of world space high energy astronomy[J]. Space International, 6-12(2009).
[3] Ouyang Z Y, Li C L, Zou Y L et al. Progress of deep space exploration and development strategy of deep space exploration in China[J]. Aerospace China, 28-32(2002).
[4] Wang H Y, Zhang C M, Chen Y. X-ray imaging spectrometer system of Chang’e-1 satellite[J]. Deep Space Exploration, 19-23(2007).
[5] Pan T, Lu F J, Ni R L et al. HXMT satellite system design and technical achievements[J]. Spacecraft Engineering, 27, 1-8(2018).
[6] Bradt H, Garmire G, Oda M et al. The modulation collimator in X-ray astronomy[J]. Space Science Reviews, 8, 471-506(1968).
[7] Hoekstra R, D’Arnaud T E, van Beek H F. Optical alignment of an X-ray collimator[J]. Applied Optics, 20, 3630-3634(1981).
[8] Tang C M, Stier E, Fischer K et al. Anti-scattering X-ray grid[J]. Microsystem Technologies, 4, 187-192(1998).
[9] Kevin F, Bidhan C, Henry G et al. Fabrication of two-dimensional X-ray antiscatter grids for mammography[J]. Proceedings of SPIE, 4145, 227-234(2001).
[10] Makarova O V, Yang G H, Tang C M et al. Fabrication of collimators for gamma-ray imaging[J]. Proceedings of SPIE, 5539, 126-132(2004).
[11] Cho H, Kim K, Lee B et al. Physical characteristics of precise antiscatter grids fabricated with a sawing process for applications to digital X-ray imaging[J]. Journal of the Korean Physical Society, 52, 243-248(2008).
[12] Makarova O V, Zyryanov V N, Divan R et al. Fabrication of grids and collimators using SU-8 as a mold[J]. Microsystem Technologies, 10, 536-539(2004).
[13] Jeong D H, Kim J M, Noh D Y et al. Micromachined anti-scatter grid fabricated using crystalline wet etching of (110) silicon and metal electroplating for X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A, 652, 846-849(2011).
[14] Lehmann V, Rönnebeck S. MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging[J]. Sensors and Actuators A, 95, 202-207(2002).
[15] Yang S Q, Wang D, Lu G D et al. Wire cutting technology of integrated grid collimator[J]. Metal Working (Metal Cutting), 30-34(2015).
[16] Jia H, Yao Y, Shi W J. The development of mechanical collimator[J]. Optical Technique, 33, 182-184(2007).
[17] Zhong M L, Yang L, Liu W J et al. Laser direct manufacturing W/Ni telescope collimation component[J]. Chinese Journal of Lasers, 31, 482-486(2004).
[18] Cao X L, Jiang W C, Zhang W C et al. Design and verification of medium energy telescope onboard HXMT satellite[J]. Spacecraft Engineering, 27, 127-133(2018).
[19] Zhang H W, Hong Z J, Xi X M et al. Quasi CW fiber laser achieves high brightness 8 kW peak power output[J]. Chinese Journal of Lasers, 48, 2116001(2021).
[20] Zhang D, Zhao L, Liu A B et al. Understanding and controlling the influence of laser energy on penetration, porosity, and microstructure during laser welding[J]. Chinese Journal of Lasers, 48, 1502005(2021).
Get Citation
Copy Citation Text
Ting Huang, Weizhe Du, Kun Su, Jianchao Zhang, Jingyang Li, Junfeng Qi, Yongping Lei, Qiang Wu, Rongshi Xiao. Laser Microwelding Technology and Equipment for Cross-Scale Collimator Grid of Deep-Space Exploration Satellite[J]. Chinese Journal of Lasers, 2022, 49(10): 1002402
Category:
Received: Nov. 25, 2021
Accepted: Jan. 24, 2022
Published Online: May. 9, 2022
The Author Email: Huang Ting (huangting@bjut.edu.cn), Xiao Rongshi (rsxiao@bjut.edu.cn)