Chinese Journal of Lasers, Volume. 51, Issue 11, 1101022(2024)

Research Progress in Laser Crystals

Chengchun Zhao, Shanming Li, Min Xu, Qiannan Fang, Shulong Zhang, Conghui Huang, Qiaorui Gong, Guangzhu Chen, and Yin Hang*
Author Affiliations
  • Research Center of Laser Crystal, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    Figures & Tables(29)
    Pr∶LiYF4 crystal
    Pr∶LaF3 crystals with different doping concentrations of Pr3+. (a) 0.5%; (b) 1%
    Band structure, partial density of states, and polarized absorption spectrum of face-contact Ti3+-Ti4+ ion pair model[93]
    Band structure and polarized absorption spectrum of line-contact Ti3+-Ti3+ ion pair model[93]
    Crystal growth process of HEM
    Ti∶sapphire HEM crystal growth equipment
    Ti∶sapphire (Ф157 mm) single crystal grown by HEM[105]
    Ti∶sapphire single crystals grown by HEM. (a) Ф235 mm×72 mm; (b) Ф242 mm×76 mm
    X-ray rocking curve of Ti∶sapphire crystal[105]
    Reference laser beam shape and transmittance laser beam shapes passing through different test regions of Ti∶sapphire crystal[105]
    Absorption spectrum of Ti∶sapphire crystal[105]
    Study on doping of LaAlO3 crystal. (a) Rhombic domain in pure LaAlO3; (b) domain-free structure in Nd,Th∶LaAlO3 crystal along [100][131]
    Output power as function of absorbed power for Nd,Th∶LaAlO3 crystal[131]
    Yb∶GdScO3 crystal[162]
    Mid-infrared fluoride laser crystals. (a) Ho∶LaF3; (b) Tm∶LaF3; (c) Tm∶LiYF4; (d) Ho∶BaY2F8; (e) Ho∶CeF3; (f) Ho∶PbF2; (g) Ho∶LiLuF4; (h) Ho, Pr∶LiLuF4; (i) Tm∶LiLuF4
    Tm∶LiYF4 crystal with 3-inch diameter
    Tm∶GdScO3 crystal, fluorescence spectrum, and continuous wave laser performance[213-214]
    Comparison of absorption and emission bandwidth of Tm3+-doped crystals[213]
    Diamond grown on surface of YAG crystal. (a) YAG crystals with diamond films; (b) scanning electron microscope (SEM) image of diamond; (c) comparison of YAG thermal conductivity with diamond/YAG thermal conductivity; (d) YAG transmittance curves before and after diamond growth[262]
    Growth of diamond on Ti∶sapphire surface using chromium transition layer. (a) XRD patterns of Ti∶sapphire samples with chromium transition layer deposited and Ti∶sapphire samples with diamond grown on transition layer; (b) cross section SEM image of diamond/chromium/Ti∶sapphire; (c) top view of differential charge density of carbon atoms on Cr (110) surface obtained based on VASP software, where yellow represents electron aggregation region and blue represents electron disappearance region[263]
    • Table 1. Comparison of spectral properties of Tm3+-doped fluoride crystals[195-197]

      View table

      Table 1. Comparison of spectral properties of Tm3+-doped fluoride crystals[195-197]

      Crystalλabs /nmσabs /(10-20 cm2λem /nmσem /(10-20 cm2τ3F4) /ms
      Tm∶LiYF4

      σ: 794;

      π: 779

      σ: 0.36;

      π: 0.78

      19100.378.44
      Tm∶LiLuF4

      σ: 794;

      π: 780

      σ: 0.30;

      π: 0.71

      19100.309.52
      Tm∶PbF2774~0.518600.4115.23
      Tm∶LaF37850.2718400.2815.56
    • Table 2. Comparison of spectral properties of Ho3+-doped fluoride crystals[198-201]

      View table

      Table 2. Comparison of spectral properties of Ho3+-doped fluoride crystals[198-201]

      Crystalλabs /nmσabs /(10-20 cm2λem /nmσem /(10-20 cm2τ5I7) /ms
      Ho∶LiYF4

      σ: 1945;

      π: 1940

      σ: 0.58;

      π: 1.0

      σ: 2062;

      π: 2050

      σ: 0.83;

      π: 1.50

      16.1
      Ho∶LiLuF4

      σ: 1940;

      π: 1940

      σ: 0.39;

      π: 0.64

      σ: 2066;

      π: 2060

      σ: 0.67;

      π: 1.30

      16
      Ho∶PbF219140.3120440.5713.6
      Ho∶LaF319250.2420400.2725.81
      Ho∶CeF319730.2020380.210.045
    • Table 3. Comparison of laser output of Tm/Ho doped fluoride laser crystals[202-211]

      View table

      Table 3. Comparison of laser output of Tm/Ho doped fluoride laser crystals[202-211]

      CrystalCTm /%λpump /nmLaser outputηslope /%λlaser /nm
      Tm∶LiLuF42794.5

      10.4 W, 8 mJ,

      315.2 ns, 1 kHz

      40.41922
      Tm,Ho∶LiLuF45, 0.57921.12 W242066
      Tm∶LiYF42796

      63 mJ, 630 kW,

      500 Hz

      25.61910
      Tm∶LiYF4279554.4 W35.61910
      Tm∶LiYF43.5791.550.2 W26.61909
      Tm∶LiYF44793

      529 μJ, 59 ns,

      378 Hz

      17

      1902

      1885

      Tm∶LiLuF41793

      41.5 μJ,

      13.9 kHz

      1950
      Tm∶LiYF44790

      1.14 W

      0.19 W

      9.7

      2053

      2297

      Tm∶PbF227801.17 W261900
      Tm,Ho∶LaF35, 0.57930.574 W18.52047
    • Table 4. Deactivation effect of Pr3+ and Nd3+ on Ho3+[232-233]

      View table

      Table 4. Deactivation effect of Pr3+ and Nd3+ on Ho3+[232-233]

      CrystalBranching ratio (5I65I7) /%τ5I6) /msτ5I7) /msτ5I6)/τ5I7) /%
      Ho∶PbF220.995.4013.6039.7
      Ho,Yb∶PbF220.525.1410.8047.6
      Ho,Nd∶PbF220.622.255.4741.1
      Ho∶LiLuF415.001.8016.0011.3
      Ho,Pr∶LiLuF419.001.471.9774.6
      Ho∶LaF322.509.0325.1235.9
      Ho,Yb∶LaF324.0010.9019.6155.6
      Ho,Nd∶LaF320.003.136.4248.8
      Ho,Pr∶LaF37.467.5898.4
    • Table 5. Pulse laser output of Ho,Pr∶LiLuF4 laser crystal[232,234-235]

      View table

      Table 5. Pulse laser output of Ho,Pr∶LiLuF4 laser crystal[232,234-235]

      Saturable absorberλlaser /μmPulse duration /nsPaverage /mWPpeak /WPulse energy /mJ
      Graphene2.95937.5881.4
      Graphitic carbon nitride2.954201011.1
      Black phosphorus2.95194.338512.52.4
      SESAM2.880.81468
      WS22.95654820.9
      WSe22.955711472.881.65
      MXene2.952671054.731.26
      MoS22.95621701.61.2
      MoSe22.95819580.82
    • Table 6. 3.9 μm mid-infrared laser output of Ho∶BaY2F8 crystal

      View table

      Table 6. 3.9 μm mid-infrared laser output of Ho∶BaY2F8 crystal

      CHo /%Crystal size /mmPumpPulse energy /mJηo-o /%
      303×3×3 (b-cut)LD, 889 nm1.050.3
      303×3×3 (b-cut)Cr∶LiSrAlF6 laser, 889 nm~1511.2
    • Table 7. Mid-infrared laser output of Fe∶ZnSe crystal[253-255]

      View table

      Table 7. Mid-infrared laser output of Fe∶ZnSe crystal[253-255]

      YearCFe /cm-3Crystal sizeOutput energy /mJλlaser /nmηslope /%
      20153×1019Ф10 mm×1 mm15430015.0
      20184×101810 mm×10 mm×1 mm65428037.0
      20183×1019Ф10 mm×1 mm78.8429528.8
    • Table 8. Comparison of physical properties between diamond and laser crystals

      View table

      Table 8. Comparison of physical properties between diamond and laser crystals

      MaterialStructureLattice constant /nmThermal expansion coefficient at 273 K /(10-6 K-1
      DiamondCubic0.35671.0
      YAGCubic1.2018.6
      YVO4Tetragonal0.7119 (a), 0.2689 (c1.5 (a), 8.2 (c
      Al2O3Hexagonal0.4758 (a),1.2991 (c7.3 (a), 8.1 (c
    • Table 9. Adsorption energy of carbon atoms on different material surfaces

      View table

      Table 9. Adsorption energy of carbon atoms on different material surfaces

      SubstrateAl2O3(0001)-AlCuAuCr
      Adsorption energy3.255.534.647.87
    Tools

    Get Citation

    Copy Citation Text

    Chengchun Zhao, Shanming Li, Min Xu, Qiannan Fang, Shulong Zhang, Conghui Huang, Qiaorui Gong, Guangzhu Chen, Yin Hang. Research Progress in Laser Crystals[J]. Chinese Journal of Lasers, 2024, 51(11): 1101022

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 21, 2024

    Accepted: Apr. 3, 2024

    Published Online: Jun. 3, 2024

    The Author Email: Hang Yin (yhang@siom.ac.cn)

    DOI:10.3788/CJL240606

    CSTR:32183.14.CJL240606

    Topics