Chinese Journal of Lasers, Volume. 47, Issue 2, 207024(2020)
Compressed Sensing STORM Super-Resolution Image Reconstruction Based on Noise Correction-Principal Component Analysis Preprocessing Algorithm
[1] Yu J. Single-molecule studies in live cells[J]. Annual Review of Physical Chemistry, 67, 565-585(2016).
[2] Xia T, Li N, Fang X H. Single-molecule fluorescence imaging in living cells[J]. Annual Review of Physical Chemistry, 64, 459-480(2013).
[3] Thompson M A, Lew M D, Moerner W E. Extending microscopic resolution with single-molecule imaging and active control[J]. Annual Review of Biophysics, 41, 321-342(2012).
[4] Joo C, Balci H, Ishitsuka Y et al. Advances in single-molecule fluorescence methods for molecular biology[J]. Annual Review of Biochemistry, 77, 51-76(2008).
[6] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[7] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[8] Pan W H, Li W, Qu J H et al. Research progress on organic fluorescent probes for single molecule localization microscopy[J]. Chinese Journal of Applied Chemistry, 36, 269-281(2019).
[9] Gordon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 6462-6465(2004).
[10] Jones S A, Shim S H, He J et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-505(2011).
[11] Lee A, Tsekouras K, Calderon C et al. Unraveling the thousand word picture: an introduction to super-resolution data analysis[J]. Chemical Reviews, 117, 7276-7330(2017).
[12] Sage D, Kirshner H, Pengo T et al. Quantitative evaluation of software packages for single-molecule localization microscopy[J]. Nature Methods, 12, 717-724(2015).
[14] Robbins M S, Hadwen B J. The noise performance of electron multiplying charge-coupled devices[J]. IEEE Transactions on Electron Devices, 50, 1227-1232(2003).
[17] Jolliffe I T. Principal component analysis[M]. 2nd ed. New York: Springer-Verlag(2002).
[18] Le Marois A, Labouesse S, Suhling K et al. Noise-Corrected Principal Component Analysis of fluorescence lifetime imaging data[J]. Journal of Biophotonics, 10, 1124-1133(2017).
[21] Pedersen F, Bergströme M, Bengtsson E et al. Principal component analysis of dynamic positron emission tomography images[J]. European Journal of Nuclear Medicine, 21, 1285-1292(1994).
[23] Quan T W, Zeng S Q, Huang Z L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging[J]. Journal of Biomedical Optics, 15, 066005(2010).
[25] O'Connor D V[M]. Phillips D. Time-correlated single photon counting, 1-35(1984).
[26] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[27] Collection of reference datasets[DB/OL]. -11-30)[2019-10-17]. http:∥bigwww.epfl.ch/smlm/datasets/.(2018).
[28] Nieuwenhuizen R P J, Lidke K A, Bates M et al. Measuring image resolution in optical nanoscopy[J]. Nature Methods, 10, 557-562(2013).
Get Citation
Copy Citation Text
Pan Wenhui, Chen Bingling, Zhang Jianguo, Gu Zhenyu, Xiong Jia, Zhang Dan, Yang Zhigang, Qu Junle. Compressed Sensing STORM Super-Resolution Image Reconstruction Based on Noise Correction-Principal Component Analysis Preprocessing Algorithm[J]. Chinese Journal of Lasers, 2020, 47(2): 207024
Category: biomedical photonics and laser medicine
Received: Oct. 18, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: