Remote Sensing Technology and Application, Volume. 39, Issue 2, 393(2024)

Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification

Mei LU*, Jiatian LI, Wen LI, Mihong HU, and Jiaxin YANG
Author Affiliations
  • Faculty of Land Resource Engineering Kunming University of Science and Technology,Kunming 650000,China
  • show less
    References(27)

    [1] ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical Transformer network. Acta Geodaetica et Cartographica Sinica, 52, 1139-1147(2023).

    [2] HUGHES G. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14, 55-63(1968).

    [3] ZENG Haijin, JIANG Jiawei, ZHAO Jiajia et al. 1-2 Spectral-spatial total variation regularized hyperspectral image denoising. Acta Photonica Sinica, 48, 214-228(L).

    [4] ZHANG H, WEI H, ZHANG L et al. Hyperspectral image restoration using low-rank matrix recovery. IEEE Transactions on Geoscience and Remote Sensing, 52, 4729-4743(2014).

    [5] MEI S, HOU J, CHEN J et al. Simultaneous spatial and spectral low-rank representation of hyperspectral images for classification. IEEE Transactions on Geoscience and Remote Sensing, 56, 2872-2886(2018).

    [6] WANG Aili, DING Shanshan, LIU He et al. Cross-scene hyperspectral image classification combined spatialspectral domain adaptation with XGBoost. Optics and Precision Engineering, 31, 1950-1961(2023).

    [7] TANG Ting, PAN Xin, LUO Xiaoling et al. Fusion of convLSTM and multi-attention mechanism network for hyperspectral image classification. Spectroscopy and Spectral Analysis, 43, 2608-2616(2023).

    [8] CHEN Liwei, ZHANG Yahan, WANG Liguo. Hyperspectral image classification based on SOP-SRL band selection and 3D-Gabor filtering. Journal of Harbin Engineering University, 42, 1230-1236(2021).

    [9] HU Xuan, LU Qikai. Hyperspectral image classification algorithm based saliency profile. Acta Photonica Sinica, 40, 71-79(2020).

    [10] TU B, ZHANG X, KANG X et al. Hyperspectral image classification via fusing correlation coefficient and joint sparse representation. IEEE Geoscience and Remote Sensing Letters, 15, 340-344(2018).

    [11] AHMADI S A, MEHRSHAD N, RAZAVI S M. Noise reduction and feature extraction based on low-rank representation and pairwise constraint preserving for hyperspectral images. International Journal of Remote Sensing, 40, 8236-8269(2019).

    [12] JIANG J, MA J, CHEN C et al. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56, 4581-4593(2018).

    [13] SUN L, JEON B, SOOMRO B N et al. Fast superpixel based subspace low rank learning method for hyperspectral denoising. IEEE Access, 6, 12031-12043(2018).

    [14] FAN F, MA Y, LI C et al. Hyperspectral image denoising with superpixel segmentation and low-rank representation. Information Sciences, 397, 48-68(2017).

    [15] TU W C, CHIEN S Y. Two-way recursive filtering. IEEE Transactions on Circuits and Systems for Video Technology, 31, 4255-4268(2021).

    [16] LIU M Y, TUZEL O, Ramalingam S et al. Entropy rate superpixel segmentation, 2097-2104(2011).

    [17] BIOUCAS-DIAS J M, NASCIMENTO J. Hyperspectral subspace identification. IEEE Transactions on Geoscience & Remote Sensing, 46, 2435-2445(2008).

    [18] DONOHO D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41, 613-627(1995).

    [19] CAI J, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20, 1956-1982(2010).

    [20] GASTAL E, OLIVEIRA M M. Domain transform for edge-aware image and video processing. Acm Transactions on Graphics, 30, 1-12(2011).

    [21] CHANG C, LIN C. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology(TIST), 2, 1-27(2011).

    [22] TU B, ZHANG X, KANG X et al. Hyperspectral image classification via fusing correlation coefficient and joint sparse representation. IEEE Geoscience & Remote Sensing Letters, 15, 340-344(2018).

    [23] KANG X, LI S, BENEDIKTSSON J A. Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Transactions on Geoscience & Remote Sensing, 52, 3742-3752(2014).

    [24] PAN B, SHI Z, XU X. Hierarchical guidance filtering-based ensemble classification for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 55, 4177-4189(2017).

    [25] ZHONG Z, LI J, LUO Z et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2017).

    [26] PAN B, SHI Z, XU X. R-VCANet: A new deep-learning-based hyperspectral image classification method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 1975-1986(2017).

    [27] ZHANG Haokui, LI Ying, JIANG Yenan. Deep learning for hyperspectral imagery classification: The state of the art and prospects. Acta Automatica Sinica, 44, 961-977(2018).

    Tools

    Get Citation

    Copy Citation Text

    Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG. Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification[J]. Remote Sensing Technology and Application, 2024, 39(2): 393

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Aug. 13, 2024

    The Author Email: Mei LU (1848957482@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.2.0393

    Topics