Remote Sensing Technology and Application, Volume. 39, Issue 2, 393(2024)

Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification

Mei LU*, Jiatian LI, Wen LI, Mihong HU, and Jiaxin YANG
Author Affiliations
  • Faculty of Land Resource Engineering Kunming University of Science and Technology,Kunming 650000,China
  • show less
    Figures & Tables(15)
    The flowchart to MSLRR_TWRF
    Influence of parameter C on classification accuracy of MSLRR_TWRF method
    Influence of parameter Sf on classification accuracy of MSLRR_TWRF method
    Influence of parameter δr on classification accuracy of MSLRR_TWRF method
    Indian Pines image classification results obtained by different methods
    PaviaU image classification results obtained by different methods
    Salinas image classification results obtained by different methods
    • Table 1. Dataset Description

      View table
      View in Article

      Table 1. Dataset Description

      数据集

      光谱范围

      /nm

      空间分辨

      率/m

      图像尺寸波段数类别数带标签样本
      Indian Pines400~2 50020×20145×1452001610 249
      PaviaU430~8601.3×1.3610×340103942 776
      Salinas400~2 5003.7×3.7512×2172041654 129
    • Table 2. Classification accuracy of different methods for Indian Pines

      View table
      View in Article

      Table 2. Classification accuracy of different methods for Indian Pines

      ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

      MSLRR_

      TWRF

      Alfalfa103638.8123.6177.4598.6167.241009098.33100
      Corn_n101 41850.6952.5675.6867.4863.8849.5374.7671.0970.92
      Corn_m1082042.2239.4162.2084.8764.3073.4973.4775.5179.52
      Corn1022727.0625.0654.8992.7341.3494.6386.6496.2196.78
      Grass_m1047375.3760.9788.1978.4895.7888.9295.8685.6786.96
      Grass_t1072084.9179.2191.1596.6095.8294.4793.3399.6498.03
      Grass_P101839.6926.6450.8498.8937.4610079.8297.7897.78
      Hay_w1046896.2097.3310096.8899.5795.7391.75100100
      Oats101014.1821.2730.7710013.77100100100100
      Soybean_n1096252.2639.9669.6785.3062.3676.1777.5484.8386.75
      Soybean_m102 44566.8963.4687.6170.4978.6965.3883.9389.9191.90
      Soybean_c1058333.1533.6377.3684.1568.0371.9079.8087.3291.56
      Wheat1019579.5678.7576.8699.3390.4099.1898.0899.4999.49
      Woods101 25591.3287.9797.9793.6496.5691.6893.4590.9197.10
      Buildings1037638.2335.2878.7089.6573.6281.4983.2991.6592.69
      stone108383.4884.7296.7599.2890.7599.5297.0295.7897.95
      OA//59.44±0.0354.60±0.0379.14±0.0381.97±0.0274.93±0.0275.49±0.0180.63±0.0487.04±0.0389.05±0.02
      AA//57.13±0.0353.11±0.0276.01±0.0589.77±0.0171.22±0.286.38±0.0187.42±0.0291.51±0.0992.96±0.08
      Kappa//54.47±0.0349.27±0.0476.51±0.0479.69±0.0371.76±0.0272.44±0.0377.97±0.0585.20±0.0487.48±0.03
    • Table 3. Classification accuracy of different methods for PaviaU

      View table
      View in Article

      Table 3. Classification accuracy of different methods for PaviaU

      ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

      MSLRR_

      TWRF

      Asphalt1018 63988.7966.0169.9472.0890.9870.9393.2284.8788.77
      Meadows102 08984.0965.5394.4379.3684.6276.7595.4492.1695.44
      Gravel103 05446.3557.3261.0578.4442.0787.1880.1094.9898.23
      Trees101 33554.0491.7253.8778.7967.2693.7498.2993.1588.87
      Sheets105 01985.4199.7597.4889.6266.7799.9798.6997.6999.57
      Soil101 32036.3156.2177.5377.3035.6885.6294.7784.3698.74
      Bitumen103 67242.6688.5866.6292.7360.2593.3890.8296.1199.96
      Bricks1093770.2972.4658.1372.5745.6181.2779.0792.0897.27
      Shadows1018098.8599.6449.9699.0175.2598.3499.8399.4599.66
      OA//64.87±0.0569.11±0.0574.53±0.0678.48±0.0561.05±0.0480.72±0.02392.35±0.0190.77±0.0294.98±0.02
      AA//67.42±0.0477.14±0.1869.89±0.0482.21±0.0363.17±0.287.46±0.01192.25±0.0292.76±0.0596.28±0.04
      Kappa//56.54±0.0661.40±0.0567.85±0.0672.50±0.0550.82±0.0475.52±0.0389.90±0.0287.91±0.0293.42±0.03
    • Table 4. Classification accuracy of different methods for Salinas

      View table
      View in Article

      Table 4. Classification accuracy of different methods for Salinas

      ClassTestTrainSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

      MSLRR_

      TWRF

      Weeds_1101 99997.6097.1897.0399.4599.9599.8787.18100100
      Weeds_2103 71698.9398.1899.9899.4699.4799.6499.8299.68100
      fallow101 96688.3490.3599.8198.1193.5197.2295.0689.35100
      fallow_P101 38498.3198.5791.4798.9299.1799.5598.7398.6698.36
      Fallow_s102 66895.9697.0199.6397.7593.0499.5796.7296.6398.34
      stubble103 94999.8299.8899.9297.6893.5399.8099.8899.7399.95
      Celery103 56995.7393.2198.8998.8398.8698.9499.9299.5999.92
      Grapes1011 26171.6268.5697.4866.3776.5870.8982.7180.9998.43
      Soil106 19399.4797.7499.9999.7698.5298.8699.3298.02100
      Corn103 26879.9886.7199.6684.3995.6586.1696.1988.2898.27
      Lettuce_4101 05883.0087.0998.1494.0491.0095.4395.1296.77100
      Lettuce_5101 91791.8486.9897.6599.9395.6299.9597.2295.3398.59
      Lettuce_61090688.7588.4992.7199.4477.5598.7997.3198.1397.99
      Lettuce_7101 06090.9895.7591.6595.1494.1595.2598.6796.0798.51
      Vinyard_U107 25849.8049.1279.7076.8453.4277.6275.5562.2599.37
      Vinyard_T101 79797.2092.2299.9692.7599.5791.9399.8897.3999.91
      OA//82.71±0.0282.16±0.0295.07±0.0187.92±0.0384.94±0.0289.23±0.0195.07±0.0388.94±0.0199.23±0.01
      AA//89.21±0.0189.19±0.0196.48±0.0193.68±0.0191.22±0.194.34±0.0194.96±0.0393.55±0.199.23±0.08
      Kappa//80.85±0.0280.20±0.0294.52±0.0286.61±0.0383.29±0.0288.04±0.0189.50±0.0487.66±0.0199.15±0.04
    • Table 5. Classification accuracy of different training samples for Indian Pines

      View table
      View in Article

      Table 5. Classification accuracy of different training samples for Indian Pines

      方法指标训练样本数
      1020304050
      SVMOA/%59.4468.6073.2575.9778.56
      AA/%57.1364.5270.3373.2575.85
      Kappa/%54.4764.5669.7172.7575.60
      PCAOA/%54.6062.3767.6770.2572.27
      AA/%53.1159.8965.1768.0771.23
      Kappa/%49.2757.7363.5166.3368.53
      IFRFOA/%79.1489.8593.4095.3396.21
      AA/%76.0185.7092.3593.8295.59
      Kappa/%76.5188.4792.4794.6595.66
      HiFiOA/%81.9788.9091.5693.0294.36
      AA/%89.7794.0195.4396.3496.90
      Kappa/%79.6987.4190.3892.0293.54
      CCJSROA/%74.9381.5786.0388.1789.45
      AA/%71.2275.5378.7379.3480.67
      Kappa/%71.7679.0984.1586.2387.95
      R-VCANetOA/%75.4983.2386.7289.1691.05
      AA/%86.3891.3394.0195.0895.92
      Kappa/%72.4480.9984.9587.6790.12
      SSRNOA/%80.6389.8794.9295.3497.37
      AA/%87.4284.5590.1885.1991.57
      Kappav77.9788.4594.1994.7097.41
      MSLRROA/%87.0492.7594.4294.7195.08
      AA/%91.5194.9896.2296.5896.63
      Kappa/%85.2091.7093.6093.9394.35
      MSLRR_TWRFOA/%89.0594.9596.8297.6698.00
      AA/%92.9696.7197.9398.4098.59
      Kappa/%87.4894.2196.3697.3297.70
    • Table 6. Classification accuracy of different training samples for PaviaU

      View table
      View in Article

      Table 6. Classification accuracy of different training samples for PaviaU

      方法指标训练样本数
      1020304050
      SVMOA/%64.8775.9278.4482.1183.19
      AA/%67.4275.4976.4979.7580.36
      Kappa/%56.5469.2872.3876.8978.24
      PCAOA/%69.1176.3877.4879.1981.29
      AA/%77.4781.8283.5484.8686.32
      Kappa/%61.4069.8471.3873.5076.04
      IFRFOA/%74.5386.4889.8792.8393.92
      AA/%69.8981.8985.9089.0590.74
      Kappa/%67.8582.5086.7590.5791.97
      HiFiOA/%78.4885.4187.5288.8789.92
      AA/%82.2188.2990.2991.7591.90
      Kappa/%72.5081.1883.8185.5586.68
      CCJSROA/%61.0564.6570.1675.9176.23
      AA/%63.1763.9368.4971.6072.82
      Kappa/%50.8255.5961.3568.6369.04
      R-VCANetOA/%80.7286.9790.6792.0793.53
      AA/%87.4690.9793.6194.3595.36
      Kappa/%75.5283.1787.8389.6291.58
      SSRNOA/%92.3594.4396.4996.6098.09
      AA/%92.2594.0496.3196.6798.01
      Kappa/%89.9092.6095.3295.4897.47
      MSLRROA/%90.7794.6895.5096.2496.78
      AA/%92.7695.4496.2296.9197.34
      Kappa/%87.9192.9894.0695.0395.75
      MSLRR_TWRFOA/%94.9897.4397.9498.1498.31
      AA/%96.2897.9998.4098.6798.84
      Kappa/%93.4296.6097.2897.5497.76
    • Table 7. Classification accuracy of different training samples for Salinas

      View table
      View in Article

      Table 7. Classification accuracy of different training samples for Salinas

      方法指标训练样本数
      1020304050
      SVMOA/%82.7184.5185.5287.2487.36
      AA/%89.2190.4691.7792.7292.94
      Kappa/%80.8582.8183.9385.8185.94
      PCAOA/%82.1684.9885.7186.3187.05
      AA/%89.1990.9991.9892.4192.94
      Kappa/%80.2083.3284.1384.7985.60
      IFRFOA/%95.0797.9898.3098.6499.05
      AA/%96.4898.4698.8699.0199.20
      Kappa/%94.5297.7698.1198.4998.95
      HiFiOA/%87.9091.3391.7992.7193.09
      AA/%93.6895.6496.0796.5996.86
      Kappa/%86.6190.3790.8891.8892.31
      CCJSROA/%84.9486.3489.3589.9290.20
      AA/%91.2291.9794.0994.3694.44
      Kappa/%83.2984.8588.1788.7689.11
      R-VCANetOA/%89.2390.3991.8393.2794.25
      AA/%94.3495.6396.3197.0697.86
      Kappa/%88.0489.3290.9292.5293.69
      SSRNOA/%90.5789.8392.4995.8996.94
      AA/%94.9696.1197.3497.7298.50
      Kappa/%89.5088.7591.6895.4296.58
      MSLRROA/%88.9490.7390.9291.7492.00
      AA/%93.5595.0395.3595.9196.10
      Kappa/%87.6889.6589.8890.7991.08
      MSLRR_TWRFOA/%99.2399.4299.6899.7499.77
      AA/%99.2399.4499.5899.6799.70
      Kappa/%99.1599.3599.6499.7199.74
    • Table 8. Running time of different compared methods

      View table
      View in Article

      Table 8. Running time of different compared methods

      方法SVMPCAIFRFHiFiCCJSR
      Indian Pines4.963.593.6375.4464.94
      PaviaU4.201.537.7544.37155.75
      Salinas11.437.036.6048.08357.59
      方法R-VCANetSSRNMSLRRMSLRR_TWRF
      Indian Pines4 785.82947.78310.32330.06
      PaviaU16 570.74194.922 142.002 153.36
      Salinas18 093.95959.881 153.381 170.84
    Tools

    Get Citation

    Copy Citation Text

    Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG. Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification[J]. Remote Sensing Technology and Application, 2024, 39(2): 393

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Aug. 13, 2024

    The Author Email: LU Mei (1848957482@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.2.0393

    Topics