Chinese Journal of Lasers, Volume. 47, Issue 7, 701016(2020)

Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers

Lü Zunren1,2, Zhang Zhongkai1,2, Wang Hong1,2, Ding Yunyun1,2, Yang Xiaoguang1,2, Meng Lei1,2, Chai Hongyu1,2, and Yang Tao1,2、*
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors,Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • show less
    References(99)

    [6] Wang J, Gao X, Feng Z Z et al. Radiation damage effect of quantum dot laser with space optical communication[J]. Vacuum and Cryogenics, 25, 41-45(2019).

    [8] Asryan L V, Suris R A. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser[J]. Semiconductor Science and Technology, 11, 554-567(1996).

    [9] Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current[J]. Applied Physics Letters, 40, 939-941(1982).

    [10] Xu P F. The research of 1.3 μm InAs/GaAs quantum dot lasers for optical communication[D]. Beijing: Graduate University of Chinese Academy of Sciences, 3-4(2012).

    [11] Miyamoto Y, Cao M, Shingai Y et al. Light emission from quantum-box structure by current injection[J]. Japanese Journal of Applied Physics, 26, L225-L227(1987).

    [12] Nötzel R. Self-organized growth of quantum-dot structures[J]. Semiconductor Science and Technology, 11, 1365-1379(1996).

    [13] Kirstaedter N, Grundmann M, Richter U et al. Low threshold, large to injection laser emission from (InGa)As quantum dots[J]. Electronics Letters, 30, 1416-1417(1994).

    [14] Huffaker D L, Park G, Zou Z et al. 1.3 μm room-temperature GaAs-based quantum-dot laser[J]. Applied Physics Letters, 73, 2564-2566(1998).

    [15] Chand N. Becker E, van der Ziel J P, et al. Excellent uniformity and very low (<50 A/cm 2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate[J]. Applied Physics Letters, 58, 1704-1706(1991).

    [16] Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm[J]. Applied Physics Letters, 72, 876-878(1998).

    [17] Huffaker D L, Deppe D G. Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 11, 934-936(1999).

    [18] Liu G, Stintz A, Li H et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well[J]. Electronics Letters, 35, 1163-1165(1999).

    [19] Liu G T, Stintz A, Li H et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures[J]. IEEE Journal of Quantum Electronics, 36, 1272-1279(2000).

    [20] Liu H Y, Sellers I R, Badcock T J et al. Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer[J]. Applied Physics Letters, 85, 704-706(2004).

    [21] Sellers I R, Liu H Y, Groom K M et al. 1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density[J]. Electronics Letters, 40, 1412-1413(2004).

    [22] Liu H Y, Childs D T, Badcock T J et al. High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents[J]. IEEE Photonics Technology Letters, 17, 1139-1141(2005).

    [23] Liu C Y, Yoon S F, Cao Q et al. Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers[J]. Applied Physics Letters, 90, 041103(2007).

    [24] Freisem S, Ozgur G, Shavritranuruk K et al. Very-low-threshold current density continuous-wave quantum-dot laser diode[J]. Electronics Letters, 44, 679-681(2008).

    [25] Deppe D G, Shavritranuruk K, Ozgur G et al. Quantum dot laser diode with low threshold and low internal loss[J]. Electronics Letters, 45, 54-56(2009).

    [26] Lü Z, Zhang Z K, Yang X G et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping[J]. Applied Physics Letters, 113, 011105(2018).

    [27] Lester L F, Stintz A, Li H et al. Optical characteristics of 1.24-μm InAs quantum-dot laser diodes[J]. IEEE Photonics Technology Letters, 11, 931-933(1999).

    [28] Shchekin O B, Ahn J, Deppe D G. High temperature performance of self-organised quantum dot laser with stacked p-doped active region[J]. Electronics Letters, 38, 712-713(2002).

    [29] Shchekin O B, Deppe D G. 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 ℃[J]. Applied Physics Letters, 80, 3277-3279(2002).

    [30] Shchekin O B, Deppe D G. Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region[J]. IEEE Photonics Technology Letters, 14, 1231-1233(2002).

    [31] Deppe D G, Huang H, Shchekin O B. Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed[J]. IEEE Journal of Quantum Electronics, 38, 1587-1593(2002).

    [32] Fathpour S, Mi Z T, Bhattacharya P et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers[J]. Applied Physics Letters, 85, 5164-5166(2004).

    [33] Ishida M, Hatori N, Otsubo K et al. Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 μm quantum dot lasers between 20 and 90 ℃[J]. Electronics Letters, 43, 219-221(2007).

    [34] Jin C Y, Badcock T J, Liu H Y et al. Observation and modeling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser[J]. IEEE Journal of Quantum Electronics, 42, 1259-1265(2006).

    [35] Badcock T J, Royce R J, Mowbray D J et al. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers[J]. Applied Physics Letters, 90, 111102(2007).

    [36] Kageyama T, Nishi K, Yamaguchi M et al. Extremely high temperature (220 ℃) continuous-wave operation of 1300-nm-range quantum-dot lasers. [C]∥2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), May 22-26, 2011, Munich, Germany. New York: IEEE, 12248755(2011).

    [37] Gready D, Eisenstein G, Gioannini M et al. On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers[J]. Applied Physics Letters, 102, 101107(2013).

    [38] Asryan L V, Suris R A. Upper limit for the modulation bandwidth of a quantum dot laser[J]. Applied Physics Letters, 96, 221112(2010).

    [39] Shchekin O B, Deppe D G. The role of p-type doping and the density of states on the modulation response of quantum dot lasers[J]. Applied Physics Letters, 80, 2758-2760(2002).

    [40] Su H, Zhang L, Gray A L et al. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers[J]. IEEE Photonics Technology Letters, 15, 1504-1506(2003).

    [41] Todaro M T, Salhi A, Fortunato L et al. High-performance directly modulated 1.3-μm undoped InAs-InGaAs quantum-dot lasers[J]. IEEE Photonics Technology Letters, 19, 191-193(2007).

    [42] Otsubo K, Hatori N, Ishida M et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments[J]. Japanese Journal of Applied Physics, 43, 1124-1126(2004).

    [43] Fathpour S, Mi Z, Bhattacharya P. Small-signal modulation characteristics of p-doped 1.1- and 1.3-μm quantum-dot lasers[J]. IEEE Photonics Technology Letters, 17, 2250-2252(2005).

    [44] Mi Z T, Bhattacharya P, Fathpour S. High-speed 1.3 μm tunnel injection quantum-dot lasers[J]. Applied Physics Letters, 86, 153109(2005).

    [45] Kim S M, Wang Y, Keever M et al. High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers[J]. IEEE Photonics Technology Letters, 16, 377-379(2004).

    [46] Terry N, Naderi N, Pochet M et al. Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser[J]. Electronics Letters, 44, 904-905(2008).

    [47] Sugawara M, Usami M. Quantum dot devices: handling the heat[J]. Nature Photonics, 3, 30-31(2009).

    [48] Tanaka Y, Ishida M, Takada K et al. 25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers. [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA, CTuZ1(2010).

    [49] Tanaka Y, Takada K, Ishida M et al. High-speed modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers. [C]∥Asia Communications and Photonics Conference and Exhibition, December 8-12, 2010, Shanghai, China. New York: IEEE, 577-578(2010).

    [50] Ishida M, Matsuda M, Tanaka Y et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers. [C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA, CM1I, 2(2012).

    [52] O'Brien D. Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers[J]. Electronics Letters, 39, 1819(2003).

    [53] He Y M, Zhang Z K, Lü Z et al. Modulation performance comparison of quantum-dot and quantum-well lasers under external feedback. [C]∥2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019, Fukuoka, Japan. New York: IEEE, 19009854(2019).

    [54] Mizutani K, Yashiki K, Kurihara M et al. Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser. [C]∥2015 European Conference on Optical Communication (ECOC), September 27-October 1, 2015, Valencia, Spain. New York: IEEE, 15635867(2015).

    [55] Huang H, Schires K, Lin L C et al. Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback. [C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA. New York: IEEE, 16543333(2016).

    [56] Huang H M, Lin L, Chen C et al. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes[J]. Optics Express, 26, 1743-1751(2018).

    [57] Lin L, Chen C, Huang H M et al. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states[J]. Optics Letters, 43, 210-213(2018).

    [58] Zhou Y G, Zhao X, Cao C F et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium[J]. Optics Express, 26, 28131-28139(2018).

    [59] Zhou Y G, Zhou C, Cao C F et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge[J]. Optics Express, 25, 28817-28824(2017).

    [60] Markus A, Chen J X, Paranthoën C et al. Simultaneous two-state lasing in quantum-dot lasers[J]. Applied Physics Letters, 82, 1818-1820(2003).

    [61] Majid M. Childs D T D, Kennedy K, et al. O-band excited state quantum dot bilayer lasers[J]. Applied Physics Letters, 99, 051101(2011).

    [62] Stevens B J. Childs D T D, Shahid H, et al. Direct modulation of excited state quantum dot lasers[J]. Applied Physics Letters, 95, 061101(2009).

    [63] Liu C Y, Wang H, Meng Q Q et al. Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 μm InAs/InGaAs quantum dot lasers[J]. Applied Physics Express, 6, 102702(2013).

    [64] Xu P F, Yang T, Ji H M et al. Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers[J]. Journal of Applied Physics, 107, 013102(2010).

    [65] Ji H M, Yang T, Cao Y L et al. Self-heating effect on the two-state lasing behaviors in 1.3-μm InAs-GaAs quantum-dot lasers[J]. Japanese Journal of Applied Physics, 49, 072103(2010).

    [66] Lü Z, Ji H M, Luo S et al. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation[J]. AIP Advances, 5, 107115(2015).

    [67] Lü Z, Ji H M, Yang X G et al. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers[J]. Chinese Physics Letters, 33, 124204(2016).

    [68] Röhm A, Lingnau B, Lüdge K. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices[J]. Applied Physics Letters, 106, 191102(2015).

    [70] Arsenijevic D, Schliwa A, Schmeckebier H et al. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers[J]. Applied Physics Letters, 104, 181101(2014).

    [71] Arsenijevic D, Bimberg D. Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying[J]. Proceedings of SPIE, 9892, 98920S(2016).

    [72] Xu P F, Ji H M, Xiao J L et al. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers[J]. Optics Letters, 37, 1298-1300(2012).

    [73] Cataluna M A, Sibbett W, Livshits D et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser[J]. Applied Physics Letters, 89, 081124(2006).

    [74] Cataluna M A, Nikitichev D I, Mikroulis S et al. Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation[J]. Optics Express, 18, 12832-12838(2010).

    [75] Grillot F, Naderi N, Wright J B et al. A dual-mode quantum dot laser operating in the excited state[J]. Applied Physics Letters, 99, 231110(2011).

    [76] Wang T, Liu H Y, Lee A et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates[J]. Optics Express, 19, 11381-11386(2011).

    [78] Liu A Y, Zhang C, Norman J et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon[J]. Applied Physics Letters, 104, 041104(2014).

    [79] Liu A Y, Herrick R W, Ueda O et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 690-697(2015).

    [80] Chen S M, Li W, Wu J et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 10, 307-311(2016).

    [81] Shutts S, Allford C P, Spinnler C et al. Degradation of III-V quantum dot lasers grown directly on silicon substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 18769741(2019).

    [82] Yang G Q, Xu B, Liang P et al. C]∥The 12th national symposium on Si-based optoelectronic materials and devices. [S.l.: s.n.](2017).

    [84] Wang T, Zhang J J, Liu H. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Physica Sinica, 64, 204209(2015).

    [85] Wu J, Chen S M, Seeds A J et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells[J]. Journal of Physics D, 48, 363001(2015).

    [86] Liu A Y, Peters J, Huang X et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 42, 338-341(2017).

    [87] Kunert B, Németh I, Reinhard S et al. Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate[J]. Thin Solid Films, 517, 140-143(2008).

    [89] Jung D, Norman J, Kennedy M J et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 111, 122107(2017).

    [90] Liu S T, Jung D, Norman J et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si[J]. Electronics Letters, 54, 432-433(2018).

    [91] Liu S T, Wu X R, Jung D et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity[J]. Optics, 6, 128-134(2019).

    [92] Jung D, Zhang Z Y, Norman J et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 5, 1094-1100(2018).

    [93] Buffolo M, Samparisi F, Rovere L et al. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 18990272(2020).

    [94] Wan Y, Li Q, Liu A Y et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon[J]. Optics Letters, 41, 1664-1667(2016).

    [95] Norman J, Kennedy M J, Selvidge J et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si[J]. Optics Express, 25, 3927-3934(2017).

    [96] Wan Y T, Jung D, Norman J et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si[J]. Optics Express, 25, 26853-26860(2017).

    [97] Chen S M, Liao M Y, Tang M C et al. Electrically pumped continuous-wave 13 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 25, 4632-4639(2017).

    [98] Wan Y T, Shang C, Norman J et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1900409(2020).

    [99] Kwoen J, Jang B, Lee J et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 26, 11568-11576(2018).

    [100] Kwoen J, Jang B, Watanabe K et al. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si(001)[J]. Optics Express, 27, 2681-2688(2019).

    CLP Journals

    [1] WANG Jun, GE Qing, LIU Shuaicheng, MA Bojie, LIU Zhuoliang, ZHAI Hao, LIN Feng, JIANG Chen, LIU Hao, LIU Kai, YANG Yisu, WANG Qi, HUANG Yongqing, REN Xiaomin. Investigation of Epitaxial III-V Quantum Well and Quantum Dot Lasers on Silicon for Monolithic Integration[J]. Journal of Synthetic Crystals, 2023, 52(5): 766

    Tools

    Get Citation

    Copy Citation Text

    Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 12, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email: Tao Yang (tyang@semi.ac.cn)

    DOI:10.3788/CJL202047.0701016

    Topics