Chinese Journal of Lasers, Volume. 47, Issue 7, 701016(2020)
Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers
[6] Wang J, Gao X, Feng Z Z et al. Radiation damage effect of quantum dot laser with space optical communication[J]. Vacuum and Cryogenics, 25, 41-45(2019).
[8] Asryan L V, Suris R A. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser[J]. Semiconductor Science and Technology, 11, 554-567(1996).
[9] Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current[J]. Applied Physics Letters, 40, 939-941(1982).
[10] Xu P F. The research of 1.3 μm InAs/GaAs quantum dot lasers for optical communication[D]. Beijing: Graduate University of Chinese Academy of Sciences, 3-4(2012).
[11] Miyamoto Y, Cao M, Shingai Y et al. Light emission from quantum-box structure by current injection[J]. Japanese Journal of Applied Physics, 26, L225-L227(1987).
[12] Nötzel R. Self-organized growth of quantum-dot structures[J]. Semiconductor Science and Technology, 11, 1365-1379(1996).
[13] Kirstaedter N, Grundmann M, Richter U et al. Low threshold, large to injection laser emission from (InGa)As quantum dots[J]. Electronics Letters, 30, 1416-1417(1994).
[14] Huffaker D L, Park G, Zou Z et al. 1.3 μm room-temperature GaAs-based quantum-dot laser[J]. Applied Physics Letters, 73, 2564-2566(1998).
[15] Chand N. Becker E, van der Ziel J P, et al. Excellent uniformity and very low (<50 A/cm 2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate[J]. Applied Physics Letters, 58, 1704-1706(1991).
[16] Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm[J]. Applied Physics Letters, 72, 876-878(1998).
[17] Huffaker D L, Deppe D G. Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 11, 934-936(1999).
[18] Liu G, Stintz A, Li H et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well[J]. Electronics Letters, 35, 1163-1165(1999).
[19] Liu G T, Stintz A, Li H et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures[J]. IEEE Journal of Quantum Electronics, 36, 1272-1279(2000).
[20] Liu H Y, Sellers I R, Badcock T J et al. Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer[J]. Applied Physics Letters, 85, 704-706(2004).
[21] Sellers I R, Liu H Y, Groom K M et al. 1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density[J]. Electronics Letters, 40, 1412-1413(2004).
[22] Liu H Y, Childs D T, Badcock T J et al. High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents[J]. IEEE Photonics Technology Letters, 17, 1139-1141(2005).
[23] Liu C Y, Yoon S F, Cao Q et al. Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers[J]. Applied Physics Letters, 90, 041103(2007).
[24] Freisem S, Ozgur G, Shavritranuruk K et al. Very-low-threshold current density continuous-wave quantum-dot laser diode[J]. Electronics Letters, 44, 679-681(2008).
[25] Deppe D G, Shavritranuruk K, Ozgur G et al. Quantum dot laser diode with low threshold and low internal loss[J]. Electronics Letters, 45, 54-56(2009).
[26] Lü Z, Zhang Z K, Yang X G et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping[J]. Applied Physics Letters, 113, 011105(2018).
[27] Lester L F, Stintz A, Li H et al. Optical characteristics of 1.24-μm InAs quantum-dot laser diodes[J]. IEEE Photonics Technology Letters, 11, 931-933(1999).
[28] Shchekin O B, Ahn J, Deppe D G. High temperature performance of self-organised quantum dot laser with stacked p-doped active region[J]. Electronics Letters, 38, 712-713(2002).
[29] Shchekin O B, Deppe D G. 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 ℃[J]. Applied Physics Letters, 80, 3277-3279(2002).
[30] Shchekin O B, Deppe D G. Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region[J]. IEEE Photonics Technology Letters, 14, 1231-1233(2002).
[31] Deppe D G, Huang H, Shchekin O B. Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed[J]. IEEE Journal of Quantum Electronics, 38, 1587-1593(2002).
[32] Fathpour S, Mi Z T, Bhattacharya P et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers[J]. Applied Physics Letters, 85, 5164-5166(2004).
[33] Ishida M, Hatori N, Otsubo K et al. Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 μm quantum dot lasers between 20 and 90 ℃[J]. Electronics Letters, 43, 219-221(2007).
[34] Jin C Y, Badcock T J, Liu H Y et al. Observation and modeling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser[J]. IEEE Journal of Quantum Electronics, 42, 1259-1265(2006).
[35] Badcock T J, Royce R J, Mowbray D J et al. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers[J]. Applied Physics Letters, 90, 111102(2007).
[36] Kageyama T, Nishi K, Yamaguchi M et al. Extremely high temperature (220 ℃) continuous-wave operation of 1300-nm-range quantum-dot lasers. [C]∥2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), May 22-26, 2011, Munich, Germany. New York: IEEE, 12248755(2011).
[37] Gready D, Eisenstein G, Gioannini M et al. On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers[J]. Applied Physics Letters, 102, 101107(2013).
[38] Asryan L V, Suris R A. Upper limit for the modulation bandwidth of a quantum dot laser[J]. Applied Physics Letters, 96, 221112(2010).
[39] Shchekin O B, Deppe D G. The role of p-type doping and the density of states on the modulation response of quantum dot lasers[J]. Applied Physics Letters, 80, 2758-2760(2002).
[40] Su H, Zhang L, Gray A L et al. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers[J]. IEEE Photonics Technology Letters, 15, 1504-1506(2003).
[41] Todaro M T, Salhi A, Fortunato L et al. High-performance directly modulated 1.3-μm undoped InAs-InGaAs quantum-dot lasers[J]. IEEE Photonics Technology Letters, 19, 191-193(2007).
[42] Otsubo K, Hatori N, Ishida M et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments[J]. Japanese Journal of Applied Physics, 43, 1124-1126(2004).
[43] Fathpour S, Mi Z, Bhattacharya P. Small-signal modulation characteristics of p-doped 1.1- and 1.3-μm quantum-dot lasers[J]. IEEE Photonics Technology Letters, 17, 2250-2252(2005).
[44] Mi Z T, Bhattacharya P, Fathpour S. High-speed 1.3 μm tunnel injection quantum-dot lasers[J]. Applied Physics Letters, 86, 153109(2005).
[45] Kim S M, Wang Y, Keever M et al. High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers[J]. IEEE Photonics Technology Letters, 16, 377-379(2004).
[46] Terry N, Naderi N, Pochet M et al. Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser[J]. Electronics Letters, 44, 904-905(2008).
[47] Sugawara M, Usami M. Quantum dot devices: handling the heat[J]. Nature Photonics, 3, 30-31(2009).
[48] Tanaka Y, Ishida M, Takada K et al. 25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers. [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA, CTuZ1(2010).
[49] Tanaka Y, Takada K, Ishida M et al. High-speed modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers. [C]∥Asia Communications and Photonics Conference and Exhibition, December 8-12, 2010, Shanghai, China. New York: IEEE, 577-578(2010).
[50] Ishida M, Matsuda M, Tanaka Y et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers. [C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA, CM1I, 2(2012).
[52] O'Brien D. Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers[J]. Electronics Letters, 39, 1819(2003).
[53] He Y M, Zhang Z K, Lü Z et al. Modulation performance comparison of quantum-dot and quantum-well lasers under external feedback. [C]∥2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019, Fukuoka, Japan. New York: IEEE, 19009854(2019).
[54] Mizutani K, Yashiki K, Kurihara M et al. Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser. [C]∥2015 European Conference on Optical Communication (ECOC), September 27-October 1, 2015, Valencia, Spain. New York: IEEE, 15635867(2015).
[55] Huang H, Schires K, Lin L C et al. Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback. [C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA. New York: IEEE, 16543333(2016).
[56] Huang H M, Lin L, Chen C et al. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes[J]. Optics Express, 26, 1743-1751(2018).
[57] Lin L, Chen C, Huang H M et al. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states[J]. Optics Letters, 43, 210-213(2018).
[58] Zhou Y G, Zhao X, Cao C F et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium[J]. Optics Express, 26, 28131-28139(2018).
[59] Zhou Y G, Zhou C, Cao C F et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge[J]. Optics Express, 25, 28817-28824(2017).
[60] Markus A, Chen J X, Paranthoën C et al. Simultaneous two-state lasing in quantum-dot lasers[J]. Applied Physics Letters, 82, 1818-1820(2003).
[61] Majid M. Childs D T D, Kennedy K, et al. O-band excited state quantum dot bilayer lasers[J]. Applied Physics Letters, 99, 051101(2011).
[62] Stevens B J. Childs D T D, Shahid H, et al. Direct modulation of excited state quantum dot lasers[J]. Applied Physics Letters, 95, 061101(2009).
[63] Liu C Y, Wang H, Meng Q Q et al. Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 μm InAs/InGaAs quantum dot lasers[J]. Applied Physics Express, 6, 102702(2013).
[64] Xu P F, Yang T, Ji H M et al. Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers[J]. Journal of Applied Physics, 107, 013102(2010).
[65] Ji H M, Yang T, Cao Y L et al. Self-heating effect on the two-state lasing behaviors in 1.3-μm InAs-GaAs quantum-dot lasers[J]. Japanese Journal of Applied Physics, 49, 072103(2010).
[66] Lü Z, Ji H M, Luo S et al. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation[J]. AIP Advances, 5, 107115(2015).
[67] Lü Z, Ji H M, Yang X G et al. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers[J]. Chinese Physics Letters, 33, 124204(2016).
[68] Röhm A, Lingnau B, Lüdge K. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices[J]. Applied Physics Letters, 106, 191102(2015).
[70] Arsenijevic D, Schliwa A, Schmeckebier H et al. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers[J]. Applied Physics Letters, 104, 181101(2014).
[71] Arsenijevic D, Bimberg D. Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying[J]. Proceedings of SPIE, 9892, 98920S(2016).
[72] Xu P F, Ji H M, Xiao J L et al. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers[J]. Optics Letters, 37, 1298-1300(2012).
[73] Cataluna M A, Sibbett W, Livshits D et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser[J]. Applied Physics Letters, 89, 081124(2006).
[74] Cataluna M A, Nikitichev D I, Mikroulis S et al. Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation[J]. Optics Express, 18, 12832-12838(2010).
[75] Grillot F, Naderi N, Wright J B et al. A dual-mode quantum dot laser operating in the excited state[J]. Applied Physics Letters, 99, 231110(2011).
[76] Wang T, Liu H Y, Lee A et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates[J]. Optics Express, 19, 11381-11386(2011).
[78] Liu A Y, Zhang C, Norman J et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon[J]. Applied Physics Letters, 104, 041104(2014).
[79] Liu A Y, Herrick R W, Ueda O et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 690-697(2015).
[80] Chen S M, Li W, Wu J et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 10, 307-311(2016).
[81] Shutts S, Allford C P, Spinnler C et al. Degradation of III-V quantum dot lasers grown directly on silicon substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 18769741(2019).
[82] Yang G Q, Xu B, Liang P et al. C]∥The 12th national symposium on Si-based optoelectronic materials and devices. [S.l.: s.n.](2017).
[84] Wang T, Zhang J J, Liu H. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Physica Sinica, 64, 204209(2015).
[85] Wu J, Chen S M, Seeds A J et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells[J]. Journal of Physics D, 48, 363001(2015).
[86] Liu A Y, Peters J, Huang X et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 42, 338-341(2017).
[87] Kunert B, Németh I, Reinhard S et al. Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate[J]. Thin Solid Films, 517, 140-143(2008).
[89] Jung D, Norman J, Kennedy M J et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 111, 122107(2017).
[90] Liu S T, Jung D, Norman J et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si[J]. Electronics Letters, 54, 432-433(2018).
[91] Liu S T, Wu X R, Jung D et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity[J]. Optics, 6, 128-134(2019).
[92] Jung D, Zhang Z Y, Norman J et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 5, 1094-1100(2018).
[93] Buffolo M, Samparisi F, Rovere L et al. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 18990272(2020).
[94] Wan Y, Li Q, Liu A Y et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon[J]. Optics Letters, 41, 1664-1667(2016).
[95] Norman J, Kennedy M J, Selvidge J et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si[J]. Optics Express, 25, 3927-3934(2017).
[96] Wan Y T, Jung D, Norman J et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si[J]. Optics Express, 25, 26853-26860(2017).
[97] Chen S M, Liao M Y, Tang M C et al. Electrically pumped continuous-wave 13 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 25, 4632-4639(2017).
[98] Wan Y T, Shang C, Norman J et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1900409(2020).
[99] Kwoen J, Jang B, Lee J et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 26, 11568-11576(2018).
[100] Kwoen J, Jang B, Watanabe K et al. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si(001)[J]. Optics Express, 27, 2681-2688(2019).
Get Citation
Copy Citation Text
Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701016
Special Issue:
Received: Feb. 12, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Tao Yang (tyang@semi.ac.cn)