Chinese Journal of Lasers, Volume. 47, Issue 7, 701016(2020)
Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers
Fig. 1. Schematic of different materials and corresponding density of states[10]. (a) Bulk material; (b) quantum well; (c) quantum wires; (d) quantum dots
Fig. 2. Schematic of etching process for preparing quantum dot structure[11]. (a) Lower quantum well structure; (b) lithography and etching along the direction <011>; (c) HCl solution etching; (d) lithography and etching along the direction <01
Fig. 4. Comparison of power-current curves between undoped and Si-doped quantum dot lasers[26]
Fig. 6. Eye map of variable-temperature large signal at 10 Gbit/s direct modulation rate[51].(a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 85 ℃
Fig. 8. Cross-section bright-field transmission electron microscopy image of growth buffer layer structure of GaAs/Si(001) substrate[99]
Fig. 9. Relationship between dislocation density and distance of III-V/Si heterointerface[99]
|
Get Citation
Copy Citation Text
Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701016
Special Issue:
Received: Feb. 12, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Tao Yang (tyang@semi.ac.cn)