Journal of Inorganic Materials, Volume. 34, Issue 3, 279(2019)

Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects

Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    References(115)

    [1] ROWE D M[M]. Modules, Systems,Applications in Thermoelectrics(2012).

    [2] JIE Q, KRAEMER D, MCENANEY K et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat[D]. Energy, 1, 16153(2016).

    [3] NOZARIASBMARZ A, SUAREZ F, VASHAEE D et al. Designing thermoelectric generators for self-powered wearable electronics[D]. Energy Environ. Sci., 9, 2099-2113(2016).

    [4] CHAMPIER D. Thermoelectric generators: a review of applications[D]. Energy Convers. Manage., 140, 167-181(2017).

    [5] ROWE D M[M]. CRC Handbook of Thermoelectrics(1995).

    [6] CHEN L, SHI X, UHER C. Recent advances in high-performance bulk thermoelectric materials[D]. Int. Mater. Rev., 61, 1-37(2016).

    [7] QIN Y T, QIU P F, ZHANG Q H et al. High-performance bulk thermoelectric materials and devices[D]. Science Foundation in China, 24, 67-80(2016).

    [8] AN H C, SEON J H. Thermoelectric generator for vehicle[D]. US8839614, 2014.

    [9] CHO G, KIM T Y, NEGASH A A. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules[D]. Energy Convers. Manage., 124, 280-286(2016).

    [10] KABEYA K, KUROKI T, MAKINO K et al. Thermoelectric generation using waste heat in steel works.[D]. Electron. Mater., 43, 2405-2410(2014).

    [11] BENNETT G L[M]. Space Applications. in CRC Handbook of Thermoelectrics, 515-537(1995).

    [12] ZHANG J Z[M]. Thermoelectric Technology(2013).

    [13] HAO F, QIU P, TANG Y et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃[D]. Energy Environ. Sci., 9, 3120-3127(2016).

    [14] GENG H Y, GUO J Q, OCHI T et al. Development of skutterudite thermoelectric materials and modules.[D]. Electron. Mater., 41, 1036-1042(2012).

    [15] GENG H, OCHI T, SUZUKI S et al. Thermoelectric properties of multifilled skutterudites with La as the main filler.[D]. Electron. Mater., 42, 1999-2005(2013).

    [16] BALKE B, BARTHOLOMÉ K, ZUCKERMANN D et al. Thermoelectric modules based on half-Heusler materials produced in large quantities.[D]. Electron. Mater., 43, 1775-1781(2014).

    [17] DYLLA M, ZHANG Q, ZHOU Z et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[D]. Nano Energy, 41, 501-510(2017).

    [18] BAI S Q, FU C G, LIU Y et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[D]. Nat. Commun., 6, 8144-1-7(2015).

    [19] GROB E, RIFFEL M. STÖHRER U. Thermoelectric generators made of FeSi2 and HMS: fabrication and measurement.[D]. Mater. Res., 10, 34-40(1995).

    [20] CAILLAT T, FLEURIAL J P, SNYDER G N et al. Development of High Efficiency Segmented Thermoelectric Unicouples[D]. 20th International Conference on Thermoelectrics, Beijing, China, 282-285(2001).

    [21] AOYAMA I, KAIBE H, RAUSCHER L et al. Doping effects on thermoelectric properties of higher manganese silicides (HMSs, MnSi1.74) and characterization of thermoelectric generating module using, p-type (Al, Ge and Mo)-doped HMSs and n-type Mg2Si0.4Sn0.6 legs[D]. Jpn. J. Appl. Phys., 44, 4275-4281(2005).

    [22] CAILLAT T, EL-GENK M S, SABER H H et al. Tests results and performance comparisons of coated and uncoated skutterudite based segmented unicouples[D]. Energy Convers. Manage., 47, 174-200(2006).

    [23] HORI Y, ITO T. Fabrication of 500 ℃ Class Thermoelectric Module and Evaluation of its High Temperature Stability[D], 642-645(2006).

    [24] CAILLAT T, EL-GENK M S, SABER H H. Tests results of skutterudite based thermoelectric unicouples[D]. Energy Convers. Manage., 48, 555-567(2007).

    [25] BHATTACHARYA S, SINGH A, THINAHARAN C et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85)[D]. J. Phys. D Appl. Phys., 42, 015502-1-5(2009).

    [26] ANATYCHUK L I, VIKHOR L N. Generator modules of segmented thermoelements[D]. Energy Convers. Manage., 50, 2366-2372(2009).

    [27] TANG S, TIAN C, ZHAO D et al. Fabrication of a CoSb3-based thermoelectric module[D]. Mater. Sci. Semicon. Proc., 13, 221-224(2010).

    [28] POON S J, WU D, ZHU S et al. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials.[D]. Mater. Res., 26, 2795-2802(2011).

    [29] ANATYCHUK L I, STRUTYNSKA L T, VIKHOR L N et al. Segmented generator modules using Bi2Te3-based materials.[D]. Electron. Mater., 40, 957-961(2011).

    [30] SEETAWAN T. Designing and fabricating of low cost thermoelectric power generators[D]. Appl. Mechan. Mater., 110-116, 4101-4105(2011).

    [31] MUTO A, POUDEL B, YANG J et al. Skutterudite unicouple characterization for energy harvesting applications[D]. Adv. Energy Mater., 3, 245-251(2013).

    [32] TAKABATAKE T. Nano-cage Structured Materials: Clathrates. in Thermoelectric Nanomaterials: Materials Design and Application[D]. Springer, Heidelberg, 33-49(2013).

    [33] KRAEMER D, MCENANEY K, SUI J et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[D]. Energy Environ. Sci., 8, 1299-1308(2015).

    [34] LE T H, NONG N V, SNYDER G J et al. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy[D]. Energy Convers. Manage., 99, 20-27(2015).

    [35] HU X, NAGASE K, YAMAMOTO A. Characterization of half-Heusler unicouple for thermoelectric conversion.[D]. Appl. Phys., 117, 1457-1461(2015).

    [36] BALAYA P. High-efficiency energy harvesting using TAGS-85/half-Heusler thermoelectric devices[D]. Energy Harvesting and Storage: Materials, Devices, and Applications V, 9115, 911507(2014).

    [37] HOLMGREN L, MIDDLETON H, SKOMEDAL G et al. Design, assembly and characterization of silicide-based thermoelectric modules[D]. Energy Convers. Manage., 110, 13-21(2016).

    [38] DYLLA M, HANUS R, ZONG P A et al. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device[D]. Energy Environ. Sci., 10, 183-191(2017).

    [39] HU X, JOOD P, OHTA M et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[D]. Energy Environ. Sci., 9, 517-529(2016).

    [40] LIAO J, TANG Y, ZHANG Q et al. Realizing thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[D]. Energy Environ. Sci., 10, 956-963(2017).

    [41] APBLETT C A, ASELAGE T L, WHALEN S A. Improving power density and efficiency of miniature radioisotopic thermoelectric generators.[D]. Power Sources, 180, 657-663(2008).

    [42] BENNETT R, HAMMEL T, OTTING W et al. Multi-mission Radioisotope Thermoelectric Generator (MMRTG) and Performance Prediction Model[D]. Int. Energy Convers. Engineer. Conf., 551-555(2013).

    [43] SHI X, SONG J Q, ZHANG W Q et al. Heat conduction in thermoelectric materials and micro-devices[D]. Physics, 42, 112-123(2013).

    [44] HUANG D, ZANG Y, ZHANG F et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials[D]. Nat. Commun., 6, 8356-1-10(2015).

    [45] CHEN L D, LIU R H, SHI X[M]. Thermoelectric Materials and Devices(2017).

    [46] BAI S Q, HUANG X Y, ZHANG Q H et al. Thermoelectric devices for power generation: recent progress and future challenges[D]. Adv. Eng. Mater., 18, 194-213(2016).

    [47] CHEN J, WU L, YAN Z. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator.[D]. Appl. Phys., 79, 8823-8828(1996).

    [48] FRAISSE G, RAMOUSSE J, SGORLON D et al. Comparison of different modeling approaches for thermoelectric elements[D]. Energy Convers. Manage., 65, 351-356(2013).

    [49] CHEN L, GONG J, SUN F et al. Effect of heat transfer on the performance of thermoelectric generators. Int.[D]. Therm. Sci., 41, 95-99(2002).

    [50] LEE H S. Optimal design of thermoelectric devices with dimensional analysis[D]. Appl. Energy, 106, 79-88(2013).

    [51] BUCKLE J R, KNOX A R, MONTECUCCO A. Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices[D]. Appl. Therm. Engineer., 35, 177-184(2012).

    [52] CHEN M, CONDRA T, ROSENDAHL L A. A three-dimensional numerical model of thermoelectric generators in fluid power systems. Int.[D]. Heat Mass Trans., 54, 345-355(2011).

    [53] CHENG C H, CHENG T C, HUANG S Y. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int.[D]. Heat Mass Trans., 53, 2001-2011(2010).

    [54] CHEN W H, HUNG C I, LIAO C Y. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl[D]. Energy, 89, 464-473(2012).

    [55] FRAISSE G, GOUPIL C, LAZARD M et al. Study of a thermoelement’s behaviour through a modelling based on electrical analogy. Int.[D]. Heat Mass Trans., 53, 3503-3512(2010).

    [56] ANTONOVA E E, LOOMAN D C. Finite Elements for Thermoelectric Device Analysis in ANSYS. International Conference on Thermoelectrics[D]. IEEE Xplore, 215-218(2005).

    [57] XU J F. ANSYS Workbench 15. 0. Publishing House of Electronics Industry, Beijing, China, 2014[M].

    [58] JIA X D. Studies on the Properties of Thermoelectric Materials and Coupled Thermal-El-Mechanical Behaviors of Thermoelectric Devices[D]. Lanzhou: Lanzhou University dissertation, PhD(2015).

    [59] BUIST R J, ROMAN S J. Development of a Burst Voltage Measurement System for High-Resolution Contact Resistance Tests of Thermoelectric Heterojunctions. Eighteenth International Conference on Thermoelectrics[D]. IEEE, 249-251(1999).

    [60] CHEN W J, LEE C H, LIAO C N. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper[D]. Electrochem. Solid-State Lett., 10, P23-P25(2007).

    [61] CHANG Y H, FENG S P, YANG J et al. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials[D]. Phys, Chem. Chem. Phys., 15, 6757-6762(2013).

    [62] HUANG J Y, LIN Y C, YANG C L et al. Low-temperature bonding of Bi0.5Sb1.5Te3 thermoelectric material with Cu electrodes using a thin-film In interlayer[D]. Metall. Mater. Trans. A, 47, 4767-4776(2016).

    [63] BASS J C, ELSNER N B, LEAVITT F A. Thermoelectric Module with Gapless Eggcrate.[D]. US5875098A, 1999.

    [65] KRAEMER D, MCENANEY K, SUI J et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[D]. Energy Environ. Sci., 8, 1299-1308(2015).

    [66] DI C, SHENG P, SUN Y et al. Organic thermoelectric materials and devices based on p- and n-type poly (metal 1, 1, 2, 2-ethenetetrathiolate)s[D]. Adv. Mater., 24, 932-937(2012).

    [67] CHO J Y, SALVADOR J R, YE Z et al. Conversion efficiency of skutterudite-based thermoelectric modules[D]. Phys. Chem. Chem. Phys., 16, 12510-12520(2014).

    [68] ABELES B, COHEN R W. Ge-Si thermoelectric power generator.[D]. Appl. Phys., 35, 247-248(1964).

    [69] OGUSU M, TAGUCHI K, TERAKADO K et al. Linear-shaped Si-Ge thermoelectric module[D]. Semiconductors, 53-57(2000).

    [70] DEFILLIPO LE, FRANKLIN B, NAKAHARA JF. Development of an improved performance SiGe unicouple[D]. AIP Conf. Proc., 324, 809-814(1995).

    [71] FUNAHASHI R, MATSUBARA I, TAKEUCHI T et al. Fabrication of an all-oxide thermoelectric power generator[D]. Appl. Phys. Lett., 78, 3627-3629(2001).

    [72] BAI S, CHEN L, FAN J et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer[D]. Mater. Lett., 58, 3876-3878(2004).

    [73] MANIA R, WOJCIECHOWSKI K T, ZYBALA R. High temperature CoSb3-Cu junctions[D]. Microelectron. Reliab., 51, 1198-1202(2011).

    [74] JIANG W, LI X Y, ZHAO D G et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation.[D]. Inorg. Mater., 24, 545-548(2009).

    [75] CAI Y H, WANG L, ZHAO D G et al. One-step sintering of CoSb3 thermoelectric material and Cu-W alloy by spark plasma sintering[D]. Mater. Sci. Forum., 389-393(2009).

    [76] BAI S Q, REN D D, TANG Y S et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn Solder.[D]. Inorg. Mater., 30, 256-260(2015).

    [77] LAN Y C, REN Z F, ZHANG Q Y.. Advanced Thermoelectrics: Materials, Contacts, Devices, and System[M](2018).

    [78] HE L, LI X, ZHAO D et al. High temperature reliability evaluation of CoSb3/electrode thermoelectric joints[D]. Intermetallics, 17, 136-141(2009).

    [79] GU M, LI X, XIA X et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0. 6Co4Sb12 thermoelectric joints at high temperature.[D]. Alloys Compd., 610, 665-670(2014).

    [80] CAILLAT T, CHI S C, FLEURIAL J P. Electrical Contacts for Skutterudite Thermoelectric Materials[D], A1, 2012.

    [81] HASEZAKI K, TSUKUDA H, YAMADA A et al. Thermoelectric Semiconductor and Electrode-fabrication and Evaluation of SiGe/electrode. XVI International Conference on Thermoelectrics[D]. IEEE, 599-602(1997).

    [82] BENNETT G L. Space Applications. in: ROWE D. M. CRC Handbook of Thermoelectrics[M](1995).

    [83] MONDT J F. SP-100 Space Subsysterns. in: ROWE D. M. CRC Handbook of Thermoelectrics[M](1995).

    [84] COCKFIELD R D. Engineering Development Testing of the GPHS-RTG Converter[D]. Intersociety Energy Conversion Engineering Conference, 321-325(1981).

    [85] LIN J S, MIYAMOTO Y, TANIHATA K et al. Microstructure and property of (Si-MoSi2)/SiGe thermoelectric convertor unit[D]. Functionally Graded Materials, 1997, 599-604(1996).

    [86] LIN J S, MIYAMOTO Y. One-step sintering of SiGe thermoelectric conversion unit and its electrodes.[D]. Mater. Res., 15, 647-652(2000).

    [87] GU M, WU J H, YANG X Y et al. Fabrication and contact resistivity of W-Si3N4/TiB2-Si3N4/p-SiGe thermoelectric joints[D]. Ceram. Int., 42, 8044-8050(2016).

    [88] ELGENK M S, SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[D]. American Institute of Physics, 485-494(2005).

    [89] APBLETT C A, ASELAGE T L, WHALEN S A. Improving power density and efficiency of miniature radioisotopic thermoelectric generators.[D]. Power Sources, 180, 657-663(2008).

    [90] EL-GENK M S, SABER H H, SAKAMOTO J et al. Life Tests of a Skutterudites Thermoelectric Unicouple (MAR-03)[D]. 22nd International Conference on Thermoelectrics, 417-420(2003).

    [91] HUANG X, LI X, XIA X et al. Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material.[D]. Alloys Compd., 604, 94-99(2014).

    [92] DONG H, HUANG X, LI X et al. Improved oxidation resistance of thermoelectric skutterudites coated with composite glass[D]. Ceram. Int., 39, 4551-4557(2013).

    [93] DONG H, LI X, TANG Y et al. Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings.[D]. Alloys Compd., 527, 247-251(2012).

    [94] CAILLAT T, CHI I, FIRDOSY S et al. Skutterudite-based Advanced Thermoelectric Technology for Potential Integration into an Enhanced MMRTG (eMMRTG)[D]. XVI International Forum on Thermoelectricity(2015).

    [95] CLIN T, TURENNE S, VASILEVSKIY D et al. Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module.[D]. Electron. Mater., 38, 994-1001(2009).

    [96] HSU C Y, LI S L, LIU C K et al. Thermo-mechanical Analysis of Thermoelectric Modules[D]. Microsystems Packaging Assembly and Circuits Technology Conference, 1-4(2010).

    [97] JIANG X, QUNGUI DU, ZHANG X et al. Influence of structure parameters on performance of the thermoelectric module. J. Wuhan Uni. Tech[D]. Mater. Sci. Edition, 26, 464-468(2011).

    [98] RATCHASIN A, SEETAWAN T, SEETAWAN U et al. Analysis of thermoelectric generator by finite element method[D]. Procedia Eng., 32, 1006-1011(2012).

    [99] AL-MERBATI A S, SAHIN A Z, YILBAS B S. Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance[D]. Appl. Therm. Eng., 50, 683-692(2013).

    [100] WU G, YU X. A holistic 3D finite element simulation model for thermoelectric power generator element[D]. Energy Convers. Manage., 86, 99-110(2014).

    [101] QIU Q, YU H, ZHANG Z et al. Performance of thermoelectric generator with ANSYS[D]. Trans. China Electrotech. Soc., 29, 253-260(2014).

    [102] CLIN T, TURENNE S, VASILEVSKIY D et al. Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys.[D]. Electron. Mater., 39, 1926-1933(2010).

    [103] DU Q G, GAO J L, ZHANG X D et al. Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module.[D]. Electron. Mater., 40, 884-888(2011).

    [104] CHEN G, MU Y, ZHAI P et al. An investigation on the coupled thermal-mechanical-electrical response of automobile thermoelectric materials and devices.[D]. Electron. Mater., 42, 1762-1770(2013).

    [105] ERERMISB K. MOSSIA K, ERTURUNA U. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices[D]. Appl. Therm. Eng., 73, 128-141(2014).

    [106] ANATYCHUK L I, LUSTE O J. On the Reliability of Thermoelectric Cooling and Generator Modules[D]. 17th International Conference on Thermoelectrics, 101-104(1998).

    [107] NGUYEN L, SETTY K, SUBBARAYAN G. Power cycling reliability, failure analysis and acceleration factors of Pb-free solder joints[C]. Proceedings Electronic Components and Technology, 1, 907-915(2005).

    [108] CHOI D K, CHOI H S, SEO W S. Prediction of reliability on thermoelectric module through accelerated life test and physics-of-failure[D]. Electron. Mater. Lett., 7, 271-275(2011).

    [109] BARAKO M T, MARCONNET A M, PARK W et al. Effect of Thermal Cycling on Commercial Thermoelectric Modules. Thermal and Thermomechanical Phenomena in Electronic Systems[D]. IEEE, 107-112(2012).

    [110] BARAKO M T, MARCONNET A M, PARK W et al. A Reliability Study with Infrared Imaging of Thermoelectric Modules Under Thermal Cycling[D]. Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 86-92(2012).

    [111] ASHEGHI M, BARAKO M T, MARCONNET A M et al. Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module.[D]. Electron. Mater., 42, 372-381(2013).

    [112] AKBARZADEH A, DATE A, DING L C. Performance and reliability of commercially available thermoelectric cells for power generation[D]. Appl. Therm. Eng., 102, 548-556(2016).

    [113] KARRI N K, MO C. Reliable thermoelectric module design under opposing requirements from structural and thermoelectric considerations.[D]. Electron. Mater., 47, 3127-3135(2018).

    [114] SOUZA C P D, TENORIO H C R L, VIEIRA D A. Measurement of parameters and degradation of thermoelectric modules[D]. IEEE Instru. Meas. Mag., 20, 13-19(2017).

    [115] HE L, LI X, ZHAO D et al. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging.[D]. Alloys Compd., 477, 425-431(2009).

    [116] BAI S, GU M, XIA X et al. Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints[D]. Appl. Sci., 7, 952-1-10(2017).

    Tools

    Get Citation

    Copy Citation Text

    Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], [in Chinese]. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 8, 2018

    Accepted: --

    Published Online: Sep. 26, 2021

    The Author Email:

    DOI:10.15541/jim20180465

    Topics