Journal of Inorganic Materials, Volume. 40, Issue 7, 754(2025)

In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions

Xinli TANG1, Ziyou DING1, Junrui CHEN1, Gang ZHAO2, and Yingchao HAN1、*
Author Affiliations
  • 11. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 22. Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • show less
    References(37)

    [1] SOKOLOVA V, EPPLE M. Biological and medical applications of calcium phosphate nanoparticles[J]. Chemistry - A European Journal, 7471(2021).

    [3] CHEN X, LI H Z, MA Y H et al. Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering[J]. Molecules, 4790(2023).

    [4] NIE L, HOU M J, WANG T W et al. Nanostructured selenium- doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications[J]. Scientific Reports, 13738(2020).

    [6] CHEN F, HUANG P, ZHU Y J et al. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging[J]. Biomaterials, 6447(2012).

    [7] LI C Y, DING Z Y, HAN Y C. In vitro antibacterial and osteogenic properties of manganese doped nano hydroxyapatite[J]. Journal of Inorganic Materials, 313(2024).

    [9] JACOBS A, RENAUDIN G, CHARBONNEL N et al. Copper- doped biphasic calcium phosphate powders: dopant release, cytotoxicity and antibacterial properties[J]. Materials, 2393(2021).

    [11] KOLLENDA S A, KLOSE J, KNUSCHKE T et al. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT[J]. Acta Biomaterialia, 244(2020).

    [12] ADAMIANO A, IAFISCO M, SANDRI M et al. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging[J]. Acta Biomaterialia, 458(2018).

    [13] ÁLAMO P, PALLARÈS V, CÉSPEDES M V et al. Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles[J]. Pharmaceutics, 1004(2020).

    [14] ALTINOǦLU E I, RUSSIN T J, KAISER J M et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2075(2008).

    [15] LLOP J, GÓMEZ-VALLEJO V, GIBSON N. Quantitative determination of the biodistribution of nanoparticles: could radiolabeling be the answer?[J]. Nanomedicine, 1035(2013).

    [16] JEONG H J, LEE B C, AHN B C et al. Development of drugs and technology for radiation theragnosis[J]. Nuclear Engineering and Technology, 597(2016).

    [17] LI P Z, WANG D D, HU J et al. The role of imaging in targeted delivery of nanomedicine for cancer therapy[J]. Advanced Drug Delivery Reviews, 114447(2022).

    [18] WANG T T, ZHANG D, SUN D et al. Current status of in vivo bioanalysis of nano drug delivery systems[J]. Journal of Pharmaceutical Analysis, 221(2020).

    [19] XIE Y F, PERERA T S H, LI F et al. Quantitative detection method of hydroxyapatite nanoparticles based on Eu3+ fluorescent labeling in vitro and in vivo[J]. ACS Applied Materials & Interfaces, 23819(2015).

    [20] HAN Y C[J].

    [21] DING Z Y, XING Q G, FAN Y R et al. Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging[J]. Materials & Design, 111008(2022).

    [22] LE A D, WEARING H J, LI D S. Streamlining physiologically- based pharmacokinetic model design for intravenous delivery of nanoparticle drugs[J]. CPT: Pharmacometrics & Systems Pharmacology, 409(2022).

    [23] DENG L J, LIU H, MA Y S et al. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles[J]. Toxicology and Applied Pharmacology, 114765(2019).

    [24] LI M, ZOU P, TYNER K et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles[J]. The AAPS Journal, 26(2017).

    [25] CHENG Y H, HE C L, RIVIERE J E et al. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach[J]. ACS Nano, 3075(2020).

    [26] ZHANG S Q, MA X Y, SHA D Y et al. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine[J]. Journal of Materials Chemistry B, 9589(2020).

    [27] CHENG X, XU Y R, ZHANG Y et al. Glucose-targeted hydroxyapatite/indocyanine green hybrid nanoparticles for collaborative tumor therapy[J]. ACS Applied Materials & Interfaces, 37665(2021).

    [28] BERNIER A, TOBIAS T, NGUYEN H et al. Vascular and blood compatibility of engineered cationic cellulose nanocrystals in cell-based assays[J]. Nanomaterials, 2072(2021).

    [29] SREENIVASAGAN S, SUBRAMANIAN A K, MOHANRAJ K G et al. Assessment of toxicity of green synthesized silver nanoparticle-coated titanium mini-implants with uncoated mini- implants: comparison in an animal model study[J]. The Journal of Contemporary Dental Practice, 944(2024).

    [32] ALMEIDA J P M, CHEN A L, FOSTER A et al. In vivo biodistribution of nanoparticles[J]. Nanomedicine, 815(2011).

    [34] CHOI J S, CAO J F, NAEEM M et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition[J]. Colloids and Surfaces B: Biointerfaces, 545(2014).

    [35] LEDFORD B T, WYATT T G, VANG J et al. Effects of particle size, charge, shape, animal disease state, and sex on the biodistribution of intravenously administered nanoparticles[J]. Particle & Particle Systems Characterization, 2300001(2023).

    [36] MELLOR R D, UCHEGBU I F. Ultrasmall-in-nano: why size matters[J]. Nanomaterials, 2476(2022).

    [37] WEI Y C, QUAN L, ZHOU C et al. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application[J]. Nanomedicine, 1495(2018).

    [39] WANG J, LIU G. Imaging nano-bio interactions in the kidney: toward a better understanding of nanoparticle clearance[J]. Angewandte Chemie International Edition, 3008(2018).

    [40] ZHAO Y T, WANG Y, RAN F et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics[J]. Scientific Reports, 4131(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xinli TANG, Ziyou DING, Junrui CHEN, Gang ZHAO, Yingchao HAN. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 3, 2024

    Accepted: --

    Published Online: Sep. 3, 2025

    The Author Email: Yingchao HAN (hanyingchao@whut.edu.cn)

    DOI:10.15541/jim20240504

    Topics