Journal of Inorganic Materials, Volume. 40, Issue 7, 754(2025)
[1] SOKOLOVA V, EPPLE M. Biological and medical applications of calcium phosphate nanoparticles[J]. Chemistry - A European Journal, 7471(2021).
[3] CHEN X, LI H Z, MA Y H et al. Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering[J]. Molecules, 4790(2023).
[4] NIE L, HOU M J, WANG T W et al. Nanostructured selenium- doped biphasic calcium phosphate with
[6] CHEN F, HUANG P, ZHU Y J et al. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging[J]. Biomaterials, 6447(2012).
[7] LI C Y, DING Z Y, HAN Y C.
[9] JACOBS A, RENAUDIN G, CHARBONNEL N et al. Copper- doped biphasic calcium phosphate powders: dopant release, cytotoxicity and antibacterial properties[J]. Materials, 2393(2021).
[11] KOLLENDA S A, KLOSE J, KNUSCHKE T et al. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT[J]. Acta Biomaterialia, 244(2020).
[12] ADAMIANO A, IAFISCO M, SANDRI M et al. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear
[13] ÁLAMO P, PALLARÈS V, CÉSPEDES M V et al. Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles[J]. Pharmaceutics, 1004(2020).
[14] ALTINOǦLU E I, RUSSIN T J, KAISER J M et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for
[15] LLOP J, GÓMEZ-VALLEJO V, GIBSON N. Quantitative determination of the biodistribution of nanoparticles: could radiolabeling be the answer?[J]. Nanomedicine, 1035(2013).
[16] JEONG H J, LEE B C, AHN B C et al. Development of drugs and technology for radiation theragnosis[J]. Nuclear Engineering and Technology, 597(2016).
[17] LI P Z, WANG D D, HU J et al. The role of imaging in targeted delivery of nanomedicine for cancer therapy[J]. Advanced Drug Delivery Reviews, 114447(2022).
[18] WANG T T, ZHANG D, SUN D et al. Current status of
[19] XIE Y F, PERERA T S H, LI F et al. Quantitative detection method of hydroxyapatite nanoparticles based on Eu3+ fluorescent labeling
[20] HAN Y C[J].
[21] DING Z Y, XING Q G, FAN Y R et al. Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging[J]. Materials & Design, 111008(2022).
[22] LE A D, WEARING H J, LI D S. Streamlining physiologically- based pharmacokinetic model design for intravenous delivery of nanoparticle drugs[J]. CPT: Pharmacometrics & Systems Pharmacology, 409(2022).
[23] DENG L J, LIU H, MA Y S et al. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles[J]. Toxicology and Applied Pharmacology, 114765(2019).
[24] LI M, ZOU P, TYNER K et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles[J]. The AAPS Journal, 26(2017).
[25] CHENG Y H, HE C L, RIVIERE J E et al. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach[J]. ACS Nano, 3075(2020).
[26] ZHANG S Q, MA X Y, SHA D Y et al. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine[J]. Journal of Materials Chemistry B, 9589(2020).
[27] CHENG X, XU Y R, ZHANG Y et al. Glucose-targeted hydroxyapatite/indocyanine green hybrid nanoparticles for collaborative tumor therapy[J]. ACS Applied Materials & Interfaces, 37665(2021).
[28] BERNIER A, TOBIAS T, NGUYEN H et al. Vascular and blood compatibility of engineered cationic cellulose nanocrystals in cell-based assays[J]. Nanomaterials, 2072(2021).
[29] SREENIVASAGAN S, SUBRAMANIAN A K, MOHANRAJ K G et al. Assessment of toxicity of green synthesized silver nanoparticle-coated titanium mini-implants with uncoated mini- implants: comparison in an animal model study[J]. The Journal of Contemporary Dental Practice, 944(2024).
[32] ALMEIDA J P M, CHEN A L, FOSTER A et al. In vivo biodistribution of nanoparticles[J]. Nanomedicine, 815(2011).
[34] CHOI J S, CAO J F, NAEEM M et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition[J]. Colloids and Surfaces B: Biointerfaces, 545(2014).
[35] LEDFORD B T, WYATT T G, VANG J et al. Effects of particle size, charge, shape, animal disease state, and sex on the biodistribution of intravenously administered nanoparticles[J]. Particle & Particle Systems Characterization, 2300001(2023).
[36] MELLOR R D, UCHEGBU I F. Ultrasmall-in-nano: why size matters[J]. Nanomaterials, 2476(2022).
[37] WEI Y C, QUAN L, ZHOU C et al. Factors relating to the biodistribution & clearance of nanoparticles & their effects on
[39] WANG J, LIU G. Imaging nano-bio interactions in the kidney: toward a better understanding of nanoparticle clearance[J]. Angewandte Chemie International Edition, 3008(2018).
[40] ZHAO Y T, WANG Y, RAN F et al. A comparison between sphere and rod nanoparticles regarding their
Get Citation
Copy Citation Text
Xinli TANG, Ziyou DING, Junrui CHEN, Gang ZHAO, Yingchao HAN.
Category:
Received: Dec. 3, 2024
Accepted: --
Published Online: Sep. 3, 2025
The Author Email: Yingchao HAN (hanyingchao@whut.edu.cn)