Journal of Infrared and Millimeter Waves, Volume. 42, Issue 3, 311(2023)

Research progress on tunable band gap antimony sulfoselenide thin films and solar cells

Yu CAO1, Ying WU1, Jing ZHOU1、*, Jian NI2, Jian-Jun ZHANG2, Jia-Hua TAO3、**, and Jun-Hao CHU3,4,5
Author Affiliations
  • 1Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, School of Electrical Engineering, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
  • 2College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 3Nanophotonics and Advanced Instrument Engineering Research Center, Ministry of Education, Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
  • 4National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 5Institute of Optoelectronics, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China
  • show less
    References(112)

    [1] Green M A, Dunlop E D, Hohl‐Ebinger J et al. Solar cell efficiency tables (Version 60)[J]. Progress in Photovoltaics: Research and Applications, 30, 687-701(2022).

    [2] Li D B, Bista S S, Song Z N et al. Maximize CdTe solar cell performance through copper activation engineering[J]. Nano Energy, 73, 104835(2020).

    [3] Nakamura M, Yamaguchi K, Kimoto Y et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 9, 1863-1867(2019).

    [4] Pan H, Chen P R, Shi B et al. Review of the research on nano-structure used as light harvesting in perovskite solar cells[J]. Acta Physica Sinica, 69, 077101(2020).

    [5] Wang Q, Yan L L, Chen B B et al. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation[J]. Acta Physica Sinica, 70, 057802(2021).

    [6] Zhang C M, Wang D D, Zhang A et al. Optical Properties of Perovskite Films Fabricated by Vacuum Flash Method[J]. Spectroscopy and Spectral Analysis, 40, 294-297(2020).

    [7] Tao J H, Chu J H. Research progress and challenges of copper indium gallium selenide thin film solar cells[J]. J Infrared Millim Waves, 41, 395-412(2022).

    [8] Chen C, Li K H, Tang J. Ten Years of Sb2Se3 Thin Film Solar Cells[J]. Solar RRL, 6, 2200094(2022).

    [9] Myagmarsereejid P, Ingram M, Batmunkh M et al. Doping Strategies in Sb2S3 Thin Films for Solar Cells[J]. Small, 17, 2100241(2021).

    [10] Shah U A, Chen S W, Khalaf G M G et al. Wide Bandgap Sb2S3 Solar Cells[J]. Advanced Functional Materials, 31, 2100265(2021).

    [11] Wang Y Z, Ji S, Shin B. Interface engineering of antimony selenide solar cells: a review on the optimization of energy band alignments[J]. Journal of Physics: Energy, 4, 044002(2022).

    [12] Xue D J, Shi H J, Tang J. Recent progress in material study and photovoltaic device of Sb2Se3[J]. Acta Physica Sinica, 64, 038406(2015).

    [13] Chen C, Tang J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions[J]. ACS Energy Letters, 5, 2294-2304(2020).

    [14] Duan Z T, Liang X Y, Feng Y et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology[J]. Advanced Materials, 34, 2202969(2022).

    [15] Wang S Y, Zhao Y Q, Che B et al. A Novel Multi-Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%-Efficiency Sb2S3 Planar Solar Cells[J]. Advanced Materials, 31, 2206242(2022).

    [16] Lu Y, Li K H, Yang X et al. HTL-Free Sb2(S,Se)3 Solar Cells with an Optimal Detailed Balance Band Gap[J]. ACS Appl Mater Interfaces, 13, 46858-46865(2021).

    [17] Wen X X, Chen C, Lu S C et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency[J]. Nature Communications, 9, 2179(2018).

    [18] Jin X, Fang Y N, Salim T et al. Controllable Solution-Phase Epitaxial Growth of Q1D Sb2(S,Se)3/CdS Heterojunction Solar Cell with 9.2% Efficiency[J]. Advanced Materials, 33, 2104346(2021).

    [19] Amsler M, Botti S, Marques M A L et al. Low-density silicon allotropes for photovoltaic applications[J]. Physical Review B, 92, 014101(2015).

    [20] Cao Y, Liu C Y, Jiang J H et al. Theoretical Insight into High‐Efficiency Triple‐Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides[J]. Solar RRL, 5, 2000800(2021).

    [21] Calixto-Rodriguez M, García H M, Nair M T S et al. Antimony Chalcogenide/Lead Selenide Thin Film Solar Cell with 2.5% Conversion Efficiency Prepared by Chemical Deposition[J]. ECS Journal of Solid State Science and Technology, 2, Q69-Q73(2013).

    [22] Zhao Y Q, Wang S Y, Jiang C H et al. Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency[J]. Advanced Energy Materials, 12, 2103015(2021).

    [23] Lei H W, Yang G, Guo Y X et al. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor[J]. Physical Chemistry Chemical Physics, 18, 16436-16443(2016).

    [24] Yang Y, Shi C W, Lyu K et al. The low-temperature preparation for crystalline Sb2S3 thin films and photovoltaic performance of the corresponding solar cells[J]. Solar Energy, 217, 25-28(2021).

    [25] Zhou B Y, Hayashi T, Hachiya K et al. Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells[J]. Thin Solid Films, 757, 139389(2022).

    [26] Lin W W, Guo W T, Yao L Q et al. Zn(O,S) Buffer Layer for in Situ Hydrothermal Sb2S3 Planar Solar Cells[J]. ACS Appl Mater Interfaces, 13, 45726-45735(2021).

    [27] Zhou J, Tang Z Q, Yang T H et al. Efficient Sb2S3 solar cells employing favorable (Sb4S6)n ribbon orientation via hydrothermal method[J]. Materials Letters, 316, 132032(2022).

    [28] Tao R M, Tan T T, Zhang H et al. Sb2Se3 solar cells fabricated via close-space sublimation[J]. Journal of Vacuum Science & Technology B, 39, 052203(2021).

    [29] Kim J, Ji S, Jang Y et al. Importance of Fine Control of Se Flux for Improving Performances of Sb2Se3 Solar Cells Prepared by Vapor Transport Deposition[J]. Solar RRL, 5, 2100327(2021).

    [30] Krautmann R, Spalatu N, Gunder R et al. Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation[J]. Solar Energy, 225, 494-500(2021).

    [31] Zhou J, He W L, Zhu J W et al. Antimony selenide as a buffer layer for high-efficiency and highly crystalline germanium monoselenide thin-film solar cells[J]. Materials Letters, 333, 133584(2023).

    [32] Tao J H, Hu X B, Xue J J et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 197, 1-6(2019).

    [33] Fan P, Chen G J, Chen S et al. Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization[J]. ACS Appl Mater Interfaces, 13, 46671-46680(2021).

    [34] Shen K, Zhang Y, Wang X Q et al. Efficient and Stable Planar n-i-p Sb2Se3 Solar Cells Enabled by Oriented 1D Trigonal Selenium Structures[J]. Adv Sci, 7, 2001013(2020).

    [35] Cao Y, Qu P, Wang C G et al. Epitaxial Growth of Vertically Aligned Antimony Selenide Nanorod Arrays for Heterostructure Based Self‐Powered Photodetector[J]. Advanced Optical Materials, 10, 2200816(2022).

    [36] Liang G X, Luo Y D, Chen S et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV[J]. Nano Energy, 73, 104806(2020).

    [37] Yang B, Xue D J, Leng M Y et al. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film: molecular precursor identification, film fabrication and band gap tuning[J]. Sci Rep, 5, 10978(2015).

    [38] Wu C Y, Zhang L J, Ding H H et al. Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells[J]. Solar Energy Materials and Solar Cells, 183, 52-58(2018).

    [39] Wu C Y, Lian W T, Zhang L J et al. Water Additive Enhanced Solution Processing of Alloy Sb2(S1-xSex)3‐Based Solar Cells[J]. Solar RRL, 4, 1900582(2020).

    [40] Wang W H, Chen G L, Wang Z Z et al. Full-inorganic Sb2(S,Se)3 solar cells using carbon as both hole selection material and electrode[J]. Electrochimica Acta, 290, 457-464(2018).

    [41] Wang Z Z, Chen G L, Wen X et al. Low-cost TiO2/Sb2(S,Se)3 heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition[J]. Materials Science in Semiconductor Processing, 68, 76-79(2017).

    [42] Zhang Y, Li J M, Jiang G S et al. Selenium-Graded Sb2(S1-xSex)3 for Planar Heterojunction Solar Cell Delivering a Certified Power Conversion Efficiency of 5.71%[J]. Solar RRL, 1, 1700017(2017).

    [43] Choi Y C, Lee Y H, Im S H et al. Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers[J]. Advanced Energy Materials, 4, 1301680(2014).

    [44] Liu M, Gong Y S, Li Z L et al. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films[J]. Applied Surface Science, 387, 790-795(2016).

    [45] Wang W H, Wang X M, Chen G L et al. Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization[J]. Advanced Electronic Materials, 5, 1800683(2019).

    [46] Tang R F, Wang X M, Lian W T et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature Energy, 5, 587-595(2020).

    [47] Wang X M, Tang R F, Jiang C H et al. Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High‐Efficiency Solar Cell[J]. Advanced Energy Materials, 10, 2002341(2020).

    [48] Yang B, Qin S K, Xue D J et al. In situ sulfurization to generate Sb2(Se1-xSx)3 alloyed films and their application for photovoltaics[J]. Progress in Photovoltaics: Research and Applications, 25, 113-122(2017).

    [49] Li K L, Xie Y, Zhou B et al. Fabrication of closed-space sublimation Sb2(S1-xSex)3 thin-film based on a single mixed powder source for photovoltaic application[J]. Optical Materials, 122, 111659(2021).

    [50] Ishaq M, Deng H, Yuan S J et al. Efficient Double Buffer Layer Sb2(SexS1-x)3 Thin Film Solar Cell Via Single Source Evaporation[J]. Solar RRL, 2, 1800144(2018).

    [51] Deng H, Yuan S J, Yang X K et al. High-throughput method to deposit continuous composition spread Sb2(SexS1-x)3 thin film for photovoltaic application[J]. Progress in Photovoltaics: Research and Applications, 26, 281-290(2018).

    [52] Lu S C, Zhao Y, Wen X X et al. Sb2(Se1‐xSx)3 Thin‐Film Solar Cells Fabricated by Single‐Source Vapor Transport Deposition[J]. Solar RRL, 3, 1800280(2019).

    [53] Hu X B, Tao J H, Wang R et al. Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source[J]. Journal of Power Sources, 493, 229737(2021).

    [54] Li K H, Lu Y, Ke X X et al. Over 7% Efficiency of Sb2(S,Se)3 Solar Cells via V‐Shaped Bandgap Engineering[J]. Solar RRL, 4, 2000220(2020).

    [55] Yin Y W, Jiang C H, Ma Y Y et al. Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells[J]. Advanced Materials, 33, 2006689(2021).

    [56] Pan Y L, Hu X B, Guo Y X et al. Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth[J]. Advanced Functional Materials, 31, 2101476(2021).

    [57] Chen C, Yin Y W, Lian W T et al. Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells[J]. Applied Physics Letters, 116, 133901(2020).

    [58] Hu J G, Wu T, Ishaq M et al. Pulsed laser deposited and sulfurized Cu2ZnSnS4 thin film for efficient solar cell[J]. Solar Energy Materials and Solar Cells, 233, 111383(2021).

    [59] Luo Y, Zhu C T, Ma S P et al. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells[J]. Acta Physica Sinica, 71, 118801(2022).

    [60] Leng M Y, Chen C, Xue D J et al. Sb2Se3 solar cells employing metal-organic solution coated CdS buffer layer[J]. Solar Energy Materials and Solar Cells, 225, 111043(2021).

    [61] Ning H, Guo H F, Zhang J Y et al. Enhancing the efficiency of Sb2S3 solar cells using dual-functional potassium doping[J]. Solar Energy Materials and Solar Cells, 221, 110816(2021).

    [62] Liu X Y, Feng Z T, Sun Y X et al. Nanostructured CdS Buffer Layer Fabricated with a Simple Spin‐Coating Method for Sb2S3 Solar Cells[J]. physica status solidi (a), 218, 2100337(2021).

    [63] Hu X B, Tao J H, Wang Y Y et al. 5.91%-efficient Sb2Se3 solar cells with a radio-frequency magnetron-sputtered CdS buffer layer[J]. Applied Materials Today, 16, 367-374(2019).

    [64] Liu J J, Cao M S, Feng Z D et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3 solar cells[J]. Journal of Alloys and Compounds, 920, 165885(2022).

    [65] Li Y, Wang K, Huang D W et al. CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting[J]. Applied Catalysis B: Environmental, 286, 119872(2021).

    [66] Wang Y, Tang R F, Huang L et al. Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications[J]. ACS Appl Mater Interfaces, 14, 33181-33190(2022).

    [67] Zeng Y Y, Huang J L, Li J J et al. Comparative Study of TiO2 and CdS as the Electron Transport Layer for Sb2S3 Solar Cells[J]. Solar RRL, 6, 2200435(2022).

    [68] Baron Jaimes A, Jaramillo-Quintero O A, Miranda Gamboa R A et al. Functional ZnO/TiO2 Bilayer as Electron Transport Material for Solution‐Processed Sb2S3 Solar Cells[J]. Solar RRL, 5, 2000764(2021).

    [69] Su M Z, Feng Z T, Feng Z et al. Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell[J]. Journal of Alloys and Compounds, 882, 160707(2021).

    [70] Mamta, Maurya K K, Singh V N. Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer[J]. Sustainability, 13, 12320(2021).

    [71] Wang W H, Yao L Q, Dong J B et al. Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium‐Free Sb2Se3 Devices[J]. Advanced Materials Interfaces, 9, 2102464(2022).

    [72] Wang W H, Cao Z X, Zuo X et al. Double interface modification promotes efficient Sb2Se3 solar cell by tailoring band alignment and light harvest[J]. Journal of Energy Chemistry, 70, 191-200(2022).

    [73] Sun M J, He Z Q, Zheng Y F et al. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells[J]. Acta Physica Sinica, 71, 137201(2022).

    [74] Jin M, Feng Z D, Zhang J Y et al. Enhancement in the efficiency of Sb2Se3 solar cell with the adding of high electrical concentration CdS:Al film[J]. Physica B: Condensed Matter, 619, 413211(2021).

    [75] Chen Y L, Tang Y W, Chen P R et al. Progress in perovskite solar cells based on different buffer layer materials[J]. Acta Physica Sinica, 69, 138401(2020).

    [76] Wang W H, Wang X M, Chen G L et al. Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer[J]. Solar RRL, 2, 1800208(2018).

    [77] Jaramillo-Quintero O A, Rincón M E, Vásquez-García G et al. Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells[J]. Progress in Photovoltaics: Research and Applications, 26, 709-717(2018).

    [78] Wu C Y, Jiang C H, Wang X M et al. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2(S1-xSex)3 Solar Cells[J]. ACS Appl Mater Interfaces, 11, 3207-3213(2019).

    [79] Zhou J, Meng D, Yang T H et al. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications[J]. Applied Surface Science, 591, 153169(2022).

    [80] Cao Y, Zhu X Y, Chen H B et al. Simulation and optimal design of antimony selenide thin film solar cells[J]. Acta Physica Sinica, 67, 247301(2018).

    [81] Zhou J, Zhang X T, Chen H B et al. Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells[J]. Applied Surface Science, 534, 147632(2020).

    [82] Tao J H, Hu X B, Guo Y X et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells[J]. Nano Energy, 60, 802-809(2019).

    [83] Zhou J, Zhu J W, He W L et al. Selective preferred orientation for high-performance antimony selenide thin-film solar cells via substrate surface modulation[J]. Journal of Alloys and Compounds, 938, 168593(2023).

    [84] Yao L Q, Lin L M, Liu H et al. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S,Se)3 solar cells by using FTO/SnO2 and carbon[J]. Journal of Materials Science & Technology, 58, 130-137(2020).

    [85] Zhao Y Q, Li C, Niu J B et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells[J]. Journal of Materials Chemistry A, 9, 12644-12651(2021).

    [86] Cao Y, Liu C Y, Zhao Y et al. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure[J]. Acta Physica Sinica, 71, 038802(2022).

    [87] Cao Y, Zhu X Y, Chen H B et al. Towards high efficiency inverted Sb2Se3 thin film solar cells[J]. Solar Energy Materials and Solar Cells, 200, 109945(2019).

    [88] Xiang Y N, Guo H X, Cai Z Y et al. Dopant-free hole-transporting materials for stable Sb2(S,Se)3 solar cells[J]. Chemical Communications, 58, 4787-4790(2022).

    [89] Jiang C H, Zhou J, Tang R F et al. 9.7%-efficient Sb2(S,Se)3 solar cells with a dithieno[3,2-b: 2′,3′-d]pyrrole-cored hole transporting material[J]. Energy & Environmental Science, 14, 359-364(2021).

    [90] Jiang C H, Yao J S, Huang P et al. Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells[J]. Cell Reports Physical Science, 1, 100001(2020).

    [91] Wang S Y, Zhao Y Q, Yao L Q et al. Efficient and stable all-inorganic Sb2(S,Se)3 solar cells via manipulating energy levels in MnS hole transporting layers[J]. Science Bulletin, 67, 263-269(2022).

    [92] Li H, Lin L M, Yao L Q et al. High‐Efficiency Sb2(S,Se)3 Solar Cells with New Hole Transport Layer‐Free Back Architecture via 2D Titanium‐Carbide Mxene[J]. Advanced Functional Materials, 32, 2110335(2021).

    [93] Chen T T, Tong G Q, Xu E Z et al. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability[J]. Journal of Materials Chemistry A, 7, 20597-20603(2019).

    [94] Guo Z L, Gao L G, Xu Z H et al. High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells[J]. Small, 14, 1802738(2018).

    [95] Yang L, Dall'Agnese C, Dall'Agnese Y et al. Surface‐Modified Metallic Ti3C2TX MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells[J]. Advanced Functional Materials, 29, 1905694(2019).

    [96] Pham D P, Kim S, Park J et al. Silicon germanium active layer with graded band gap and µc-Si:H buffer layer for high efficiency thin film solar cells[J]. Materials Science in Semiconductor Processing, 56, 183-188(2016).

    [97] Chen J F, Ren H Z, Hou F H et al. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells[J]. Acta Physica Sinica, 68, 028101(2019).

    [98] Chen S, Ishaq M, Xiong W et al. Improved Open‐Circuit Voltage of Sb2Se3 Thin‐Film Solar Cells Via Interfacial Sulfur Diffusion‐Induced Gradient Bandgap Engineering[J]. Solar RRL, 5, 2100419(2021).

    [99] Wang X M, Shi X Q, Zhang F et al. Chemical etching induced surface modification and gentle gradient bandgap for highly efficient Sb2(S,Se)3 solar cell[J]. Applied Surface Science, 579, 152193(2022).

    [100] Cao Y, Jiang J H, Liu C Y et al. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells[J]. Acta Physica Sinica, 70, 128802(2021).

    [101] Cao Y, Liu C Y, Yang T H et al. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells[J]. Solar Energy Materials and Solar Cells, 246, 111926(2022).

    [102] Dong J B, Liu Y, Wang Z Y et al. Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects[J]. Nano Select, 2, 1818-1848(2021).

    [103] Ayala-Mató F, Vigil-Galán O, Nicolás-Marín M M et al. Study of loss mechanisms on Sb2(S1-xSex)3 solar cell with n-i-p structure: Toward an efficiency promotion[J]. Applied Physics Letters, 118, 073903(2021).

    [104] Tang R, Chen S, Zheng Z H et al. Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells[J]. Advanced Materials, 34, 2109078(2022).

    [105] Liang G X, Chen M D, Ishaq M et al. Crystal Growth Promotion and Defects Healing Enable Minimum Open‐Circuit Voltage Deficit in Antimony Selenide Solar Cells[J]. Advanced Science, 9, 2105142(2022).

    [106] Cao Y, Zhu X Y, Jiang J H et al. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices[J]. Solar Energy Materials and Solar Cells, 206, 110279(2020).

    [107] Cao Y, Zhu X Y, Tong X Y et al. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion[J]. Frontiers of Chemical Science and Engineering, 14, 997-1005(2020).

    [108] Li J W, Wang Z J, Shi C Y et al. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons[J]. Acta Physica Sinica, 69, 098802(2020).

    [109] Zhu X F, Chi Z R, Hu P F et al. Feasibility Study on LED as Monochromatic Light Source in QuantumEfficiency Instrument[J]. Spectroscopy and Spectral Analysis, 39, 3340-3345(2019).

    [110] Nair P K, Medina E A Z, Garcia G V et al. Functional prototype modules of antimony sulfide selenide thin film solar cells[J]. Thin Solid Films, 669, 410-418(2019).

    [111] Nair P K, De Bray-Sánchez F, Vázquez-García G et al. Antimony sulfide selenide prototype photovoltaic modules surpassing 4% conversion efficiency under the sun-A technological outlook[J]. Solar Energy, 188, 1169-1177(2019).

    [112] Han W H, Gao D, Tang R F et al. Efficient Sb2(S,Se)3 Solar Modules Enabled by Hydrothermal Deposition[J]. Solar RRL, 5, 2000750(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yu CAO, Ying WU, Jing ZHOU, Jian NI, Jian-Jun ZHANG, Jia-Hua TAO, Jun-Hao CHU. Research progress on tunable band gap antimony sulfoselenide thin films and solar cells[J]. Journal of Infrared and Millimeter Waves, 2023, 42(3): 311

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 7, 2022

    Accepted: --

    Published Online: Jul. 5, 2023

    The Author Email: Jing ZHOU (zhoujing@neepu.edu.cn), Jia-Hua TAO (jhtao@phy.ecnu.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.03.005

    Topics