Journal of Infrared and Millimeter Waves, Volume. 42, Issue 3, 311(2023)
Research progress on tunable band gap antimony sulfoselenide thin films and solar cells
[1] M A Green, E D Dunlop, J Hohl‐Ebinger et al. Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Research and Applications, 30, 687-701(2022).
[2] D B Li, S S Bista, Z N Song et al. Maximize CdTe solar cell performance through copper activation engineering. Nano Energy, 73, 104835(2020).
[3] M Nakamura, K Yamaguchi, Y Kimoto et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863-1867(2019).
[4] H Pan, P R Chen, B Shi et al. Review of the research on nano-structure used as light harvesting in perovskite solar cells. Acta Physica Sinica, 69, 077101(2020).
[5] Q Wang, L L Yan, B B Chen et al. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 70, 057802(2021).
[6] C M Zhang, D D Wang, A Zhang et al. Optical Properties of Perovskite Films Fabricated by Vacuum Flash Method. Spectroscopy and Spectral Analysis, 40, 294-297(2020).
[7] J H Tao, J H Chu. Research progress and challenges of copper indium gallium selenide thin film solar cells. J Infrared Millim Waves, 41, 395-412(2022).
[8] C Chen, K H Li, J Tang. Ten Years of Sb2Se3 Thin Film Solar Cells. Solar RRL, 6, 2200094(2022).
[9] P Myagmarsereejid, M Ingram, M Batmunkh et al. Doping Strategies in Sb2S3 Thin Films for Solar Cells. Small, 17, 2100241(2021).
[10] U A Shah, S W Chen, G M G Khalaf et al. Wide Bandgap Sb2S3 Solar Cells. Advanced Functional Materials, 31, 2100265(2021).
[11] Y Z Wang, S Ji, B Shin. Interface engineering of antimony selenide solar cells: a review on the optimization of energy band alignments. Journal of Physics: Energy, 4, 044002(2022).
[12] D J Xue, H J Shi, J Tang. Recent progress in material study and photovoltaic device of Sb2Se3. Acta Physica Sinica, 64, 038406(2015).
[13] C Chen, J Tang. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions. ACS Energy Letters, 5, 2294-2304(2020).
[14] Z T Duan, X Y Liang, Y Feng et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Advanced Materials, 34, 2202969(2022).
[15] S Y Wang, Y Q Zhao, B Che et al. A Novel Multi-Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%-Efficiency Sb2S3 Planar Solar Cells. Advanced Materials, 31, 2206242(2022).
[16] Y Lu, K H Li, X Yang et al. HTL-Free Sb2(S,Se)3 Solar Cells with an Optimal Detailed Balance Band Gap. ACS Appl Mater Interfaces, 13, 46858-46865(2021).
[17] X X Wen, C Chen, S C Lu et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 9, 2179(2018).
[18] X Jin, Y N Fang, T Salim et al. Controllable Solution-Phase Epitaxial Growth of Q1D Sb2(S,Se)3/CdS Heterojunction Solar Cell with 9.2% Efficiency. Advanced Materials, 33, 2104346(2021).
[19] M Amsler, S Botti, M A L Marques et al. Low-density silicon allotropes for photovoltaic applications. Physical Review B, 92, 014101(2015).
[20] Y Cao, C Y Liu, J H Jiang et al. Theoretical Insight into High‐Efficiency Triple‐Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides. Solar RRL, 5, 2000800(2021).
[21] M Calixto-Rodriguez, H M García, M T S Nair et al. Antimony Chalcogenide/Lead Selenide Thin Film Solar Cell with 2.5% Conversion Efficiency Prepared by Chemical Deposition. ECS Journal of Solid State Science and Technology, 2, Q69-Q73(2013).
[22] Y Q Zhao, S Y Wang, C H Jiang et al. Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency. Advanced Energy Materials, 12, 2103015(2021).
[23] H W Lei, G Yang, Y X Guo et al. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor. Physical Chemistry Chemical Physics, 18, 16436-16443(2016).
[24] Y Yang, C W Shi, K Lyu et al. The low-temperature preparation for crystalline Sb2S3 thin films and photovoltaic performance of the corresponding solar cells. Solar Energy, 217, 25-28(2021).
[25] B Y Zhou, T Hayashi, K Hachiya et al. Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells. Thin Solid Films, 757, 139389(2022).
[26] W W Lin, W T Guo, L Q Yao et al. Zn(O,S) Buffer Layer for in Situ Hydrothermal Sb2S3 Planar Solar Cells. ACS Appl Mater Interfaces, 13, 45726-45735(2021).
[27] J Zhou, Z Q Tang, T H Yang et al. Efficient Sb2S3 solar cells employing favorable (Sb4S6)n ribbon orientation via hydrothermal method. Materials Letters, 316, 132032(2022).
[28] R M Tao, T T Tan, H Zhang et al. Sb2Se3 solar cells fabricated via close-space sublimation. Journal of Vacuum Science & Technology B, 39, 052203(2021).
[29] J Kim, S Ji, Y Jang et al. Importance of Fine Control of Se Flux for Improving Performances of Sb2Se3 Solar Cells Prepared by Vapor Transport Deposition. Solar RRL, 5, 2100327(2021).
[30] R Krautmann, N Spalatu, R Gunder et al. Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation. Solar Energy, 225, 494-500(2021).
[31] J Zhou, W L He, J W Zhu et al. Antimony selenide as a buffer layer for high-efficiency and highly crystalline germanium monoselenide thin-film solar cells. Materials Letters, 333, 133584(2023).
[32] J H Tao, X B Hu, J J Xue et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Solar Energy Materials and Solar Cells, 197, 1-6(2019).
[33] P Fan, G J Chen, S Chen et al. Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization. ACS Appl Mater Interfaces, 13, 46671-46680(2021).
[34] K Shen, Y Zhang, X Q Wang et al. Efficient and Stable Planar n-i-p Sb2Se3 Solar Cells Enabled by Oriented 1D Trigonal Selenium Structures. Adv Sci, 7, 2001013(2020).
[35] Y Cao, P Qu, C G Wang et al. Epitaxial Growth of Vertically Aligned Antimony Selenide Nanorod Arrays for Heterostructure Based Self‐Powered Photodetector. Advanced Optical Materials, 10, 2200816(2022).
[36] G X Liang, Y D Luo, S Chen et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy, 73, 104806(2020).
[37] B Yang, D J Xue, M Y Leng et al. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film: molecular precursor identification, film fabrication and band gap tuning. Sci Rep, 5, 10978(2015).
[38] C Y Wu, L J Zhang, H H Ding et al. Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells. Solar Energy Materials and Solar Cells, 183, 52-58(2018).
[39] C Y Wu, W T Lian, L J Zhang et al. Water Additive Enhanced Solution Processing of Alloy Sb2(S1-xSex)3‐Based Solar Cells. Solar RRL, 4, 1900582(2020).
[40] W H Wang, G L Chen, Z Z Wang et al. Full-inorganic Sb2(S,Se)3 solar cells using carbon as both hole selection material and electrode. Electrochimica Acta, 290, 457-464(2018).
[41] Z Z Wang, G L Chen, X Wen et al. Low-cost TiO2/Sb2(S,Se)3 heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition. Materials Science in Semiconductor Processing, 68, 76-79(2017).
[42] Y Zhang, J M Li, G S Jiang et al. Selenium-Graded Sb2(S1-xSex)3 for Planar Heterojunction Solar Cell Delivering a Certified Power Conversion Efficiency of 5.71%. Solar RRL, 1, 1700017(2017).
[43] Y C Choi, Y H Lee, S H Im et al. Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers. Advanced Energy Materials, 4, 1301680(2014).
[44] M Liu, Y S Gong, Z L Li et al. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films. Applied Surface Science, 387, 790-795(2016).
[45] W H Wang, X M Wang, G L Chen et al. Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization. Advanced Electronic Materials, 5, 1800683(2019).
[46] R F Tang, X M Wang, W T Lian et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 5, 587-595(2020).
[47] X M Wang, R F Tang, C H Jiang et al. Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High‐Efficiency Solar Cell. Advanced Energy Materials, 10, 2002341(2020).
[48] B Yang, S K Qin, D J Xue et al. In situ sulfurization to generate Sb2(Se1-xSx)3 alloyed films and their application for photovoltaics. Progress in Photovoltaics: Research and Applications, 25, 113-122(2017).
[49] K L Li, Y Xie, B Zhou et al. Fabrication of closed-space sublimation Sb2(S1-xSex)3 thin-film based on a single mixed powder source for photovoltaic application. Optical Materials, 122, 111659(2021).
[50] M Ishaq, H Deng, S J Yuan et al. Efficient Double Buffer Layer Sb2(SexS1-x)3 Thin Film Solar Cell Via Single Source Evaporation. Solar RRL, 2, 1800144(2018).
[51] H Deng, S J Yuan, X K Yang et al. High-throughput method to deposit continuous composition spread Sb2(SexS1-x)3 thin film for photovoltaic application. Progress in Photovoltaics: Research and Applications, 26, 281-290(2018).
[52] S C Lu, Y Zhao, X X Wen et al. Sb2(Se1‐xSx)3 Thin‐Film Solar Cells Fabricated by Single‐Source Vapor Transport Deposition. Solar RRL, 3, 1800280(2019).
[53] X B Hu, J H Tao, R Wang et al. Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source. Journal of Power Sources, 493, 229737(2021).
[54] K H Li, Y Lu, X X Ke et al. Over 7% Efficiency of Sb2(S,Se)3 Solar Cells via V‐Shaped Bandgap Engineering. Solar RRL, 4, 2000220(2020).
[55] Y W Yin, C H Jiang, Y Y Ma et al. Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells. Advanced Materials, 33, 2006689(2021).
[56] Y L Pan, X B Hu, Y X Guo et al. Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth. Advanced Functional Materials, 31, 2101476(2021).
[57] C Chen, Y W Yin, W T Lian et al. Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells. Applied Physics Letters, 116, 133901(2020).
[58] J G Hu, T Wu, M Ishaq et al. Pulsed laser deposited and sulfurized Cu2ZnSnS4 thin film for efficient solar cell. Solar Energy Materials and Solar Cells, 233, 111383(2021).
[59] Y Luo, C T Zhu, S P Ma et al. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 71, 118801(2022).
[60] M Y Leng, C Chen, D J Xue et al. Sb2Se3 solar cells employing metal-organic solution coated CdS buffer layer. Solar Energy Materials and Solar Cells, 225, 111043(2021).
[61] H Ning, H F Guo, J Y Zhang et al. Enhancing the efficiency of Sb2S3 solar cells using dual-functional potassium doping. Solar Energy Materials and Solar Cells, 221, 110816(2021).
[62] X Y Liu, Z T Feng, Y X Sun et al. Nanostructured CdS Buffer Layer Fabricated with a Simple Spin‐Coating Method for Sb2S3 Solar Cells. physica status solidi (a), 218, 2100337(2021).
[63] X B Hu, J H Tao, Y Y Wang et al. 5.91%-efficient Sb2Se3 solar cells with a radio-frequency magnetron-sputtered CdS buffer layer. Applied Materials Today, 16, 367-374(2019).
[64] J J Liu, M S Cao, Z D Feng et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3 solar cells. Journal of Alloys and Compounds, 920, 165885(2022).
[65] Y Li, K Wang, D W Huang et al. CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Applied Catalysis B: Environmental, 286, 119872(2021).
[66] Y Wang, R F Tang, L Huang et al. Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications. ACS Appl Mater Interfaces, 14, 33181-33190(2022).
[67] Y Y Zeng, J L Huang, J J Li et al. Comparative Study of TiO2 and CdS as the Electron Transport Layer for Sb2S3 Solar Cells. Solar RRL, 6, 2200435(2022).
[68] A Baron Jaimes, O A Jaramillo-Quintero, R A Miranda Gamboa et al. Functional ZnO/TiO2 Bilayer as Electron Transport Material for Solution‐Processed Sb2S3 Solar Cells. Solar RRL, 5, 2000764(2021).
[69] M Z Su, Z T Feng, Z Feng et al. Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell. Journal of Alloys and Compounds, 882, 160707(2021).
[70] Mamta , K K Maurya, V N Singh. Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer. Sustainability, 13, 12320(2021).
[71] W H Wang, L Q Yao, J B Dong et al. Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium‐Free Sb2Se3 Devices. Advanced Materials Interfaces, 9, 2102464(2022).
[72] W H Wang, Z X Cao, X Zuo et al. Double interface modification promotes efficient Sb2Se3 solar cell by tailoring band alignment and light harvest. Journal of Energy Chemistry, 70, 191-200(2022).
[73] M J Sun, Z Q He, Y F Zheng et al. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 71, 137201(2022).
[74] M Jin, Z D Feng, J Y Zhang et al. Enhancement in the efficiency of Sb2Se3 solar cell with the adding of high electrical concentration CdS:Al film. Physica B: Condensed Matter, 619, 413211(2021).
[75] Y L Chen, Y W Tang, P R Chen et al. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 69, 138401(2020).
[76] W H Wang, X M Wang, G L Chen et al. Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer. Solar RRL, 2, 1800208(2018).
[77] O A Jaramillo-Quintero, M E Rincón, G Vásquez-García et al. Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells. Progress in Photovoltaics: Research and Applications, 26, 709-717(2018).
[78] C Y Wu, C H Jiang, X M Wang et al. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2(S1-xSex)3 Solar Cells. ACS Appl Mater Interfaces, 11, 3207-3213(2019).
[79] J Zhou, D Meng, T H Yang et al. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications. Applied Surface Science, 591, 153169(2022).
[80] Y Cao, X Y Zhu, H B Chen et al. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 67, 247301(2018).
[81] J Zhou, X T Zhang, H B Chen et al. Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells. Applied Surface Science, 534, 147632(2020).
[82] J H Tao, X B Hu, Y X Guo et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy, 60, 802-809(2019).
[83] J Zhou, J W Zhu, W L He et al. Selective preferred orientation for high-performance antimony selenide thin-film solar cells via substrate surface modulation. Journal of Alloys and Compounds, 938, 168593(2023).
[84] L Q Yao, L M Lin, H Liu et al. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S,Se)3 solar cells by using FTO/SnO2 and carbon. Journal of Materials Science & Technology, 58, 130-137(2020).
[85] Y Q Zhao, C Li, J B Niu et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells. Journal of Materials Chemistry A, 9, 12644-12651(2021).
[86] Y Cao, C Y Liu, Y Zhao et al. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 71, 038802(2022).
[87] Y Cao, X Y Zhu, H B Chen et al. Towards high efficiency inverted Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 200, 109945(2019).
[88] Y N Xiang, H X Guo, Z Y Cai et al. Dopant-free hole-transporting materials for stable Sb2(S,Se)3 solar cells. Chemical Communications, 58, 4787-4790(2022).
[89] C H Jiang, J Zhou, R F Tang et al. 9.7%-efficient Sb2(S,Se)3 solar cells with a dithieno[3,2-b: 2′,3′-d]pyrrole-cored hole transporting material. Energy & Environmental Science, 14, 359-364(2021).
[90] C H Jiang, J S Yao, P Huang et al. Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells. Cell Reports Physical Science, 1, 100001(2020).
[91] S Y Wang, Y Q Zhao, L Q Yao et al. Efficient and stable all-inorganic Sb2(S,Se)3 solar cells via manipulating energy levels in MnS hole transporting layers. Science Bulletin, 67, 263-269(2022).
[92] H Li, L M Lin, L Q Yao et al. High‐Efficiency Sb2(S,Se)3 Solar Cells with New Hole Transport Layer‐Free Back Architecture via 2D Titanium‐Carbide Mxene. Advanced Functional Materials, 32, 2110335(2021).
[93] T T Chen, G Q Tong, E Z Xu et al. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. Journal of Materials Chemistry A, 7, 20597-20603(2019).
[94] Z L Guo, L G Gao, Z H Xu et al. High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. Small, 14, 1802738(2018).
[95] L Yang, C Dall'Agnese, Y Dall'Agnese et al. Surface‐Modified Metallic Ti3C2TX MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 29, 1905694(2019).
[96] D P Pham, S Kim, J Park et al. Silicon germanium active layer with graded band gap and µc-Si:H buffer layer for high efficiency thin film solar cells. Materials Science in Semiconductor Processing, 56, 183-188(2016).
[97] J F Chen, H Z Ren, F H Hou et al. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 68, 028101(2019).
[98] S Chen, M Ishaq, W Xiong et al. Improved Open‐Circuit Voltage of Sb2Se3 Thin‐Film Solar Cells Via Interfacial Sulfur Diffusion‐Induced Gradient Bandgap Engineering. Solar RRL, 5, 2100419(2021).
[99] X M Wang, X Q Shi, F Zhang et al. Chemical etching induced surface modification and gentle gradient bandgap for highly efficient Sb2(S,Se)3 solar cell. Applied Surface Science, 579, 152193(2022).
[100] Y Cao, J H Jiang, C Y Liu et al. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 70, 128802(2021).
[101] Y Cao, C Y Liu, T H Yang et al. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Solar Energy Materials and Solar Cells, 246, 111926(2022).
[102] J B Dong, Y Liu, Z Y Wang et al. Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects. Nano Select, 2, 1818-1848(2021).
[103] F Ayala-Mató, O Vigil-Galán, M M Nicolás-Marín et al. Study of loss mechanisms on Sb2(S1-xSex)3 solar cell with n-i-p structure: Toward an efficiency promotion. Applied Physics Letters, 118, 073903(2021).
[104] R Tang, S Chen, Z H Zheng et al. Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells. Advanced Materials, 34, 2109078(2022).
[105] G X Liang, M D Chen, M Ishaq et al. Crystal Growth Promotion and Defects Healing Enable Minimum Open‐Circuit Voltage Deficit in Antimony Selenide Solar Cells. Advanced Science, 9, 2105142(2022).
[106] Y Cao, X Y Zhu, J H Jiang et al. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Solar Energy Materials and Solar Cells, 206, 110279(2020).
[107] Y Cao, X Y Zhu, X Y Tong et al. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Frontiers of Chemical Science and Engineering, 14, 997-1005(2020).
[108] J W Li, Z J Wang, C Y Shi et al. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 69, 098802(2020).
[109] X F Zhu, Z R Chi, P F Hu et al. Feasibility Study on LED as Monochromatic Light Source in QuantumEfficiency Instrument. Spectroscopy and Spectral Analysis, 39, 3340-3345(2019).
[110] P K Nair, E A Z Medina, G V Garcia et al. Functional prototype modules of antimony sulfide selenide thin film solar cells. Thin Solid Films, 669, 410-418(2019).
[111] P K Nair, F De Bray-Sánchez, G Vázquez-García et al. Antimony sulfide selenide prototype photovoltaic modules surpassing 4% conversion efficiency under the sun-A technological outlook. Solar Energy, 188, 1169-1177(2019).
[112] W H Han, D Gao, R F Tang et al. Efficient Sb2(S,Se)3 Solar Modules Enabled by Hydrothermal Deposition. Solar RRL, 5, 2000750(2021).
Get Citation
Copy Citation Text
Yu CAO, Ying WU, Jing ZHOU, Jian NI, Jian-Jun ZHANG, Jia-Hua TAO, Jun-Hao CHU. Research progress on tunable band gap antimony sulfoselenide thin films and solar cells[J]. Journal of Infrared and Millimeter Waves, 2023, 42(3): 311
Category: Research Articles
Received: Nov. 7, 2022
Accepted: --
Published Online: Jul. 5, 2023
The Author Email: ZHOU Jing (zhoujing@neepu.edu.cn), TAO Jia-Hua (jhtao@phy.ecnu.edu.cn)