Acta Optica Sinica, Volume. 43, Issue 20, 2027001(2023)
Four-Party Semi-Quantum Key Agreement Protocol Based on Four-Particle Cluster States
[1] Zhou N, Zeng G, Xiong J. Quantum key agreement protocol[J]. Electronics Letters, 40, 1149-1150(2004).
[2] Chong S K, Hwang T. Quantum key agreement protocol based on BB84[J]. Optics Communications, 283, 1192-1195(2010).
[3] He Y F, Ma W P. Quantum key agreement protocols with four-qubit cluster states[J]. Quantum Information Processing, 14, 3483-3498(2015).
[4] Shukla C, Alam N, Pathak A. Protocols of quantum key agreement solely using Bell states and Bell measurement[J]. Quantum Information Processing, 13, 2391-2405(2014).
[5] Huang W, Wen Q Y, Liu B et al. Quantum key agreement with EPR pairs and single-particle measurements[J]. Quantum Information Processing, 13, 649-663(2014).
[6] Gu J, Hwang T. Improvement of "novel multiparty quantum key agreement protocol with GHZ states"[J]. International Journal of Theoretical Physics, 56, 3108-3116(2017).
[7] Sun Z W, Zhang C, Wang P et al. Multi-party quantum key agreement by an entangled six-qubit state[J]. International Journal of Theoretical Physics, 55, 1920-1929(2016).
[8] Sun Z W, Huang J W, Wang P. Efficient multiparty quantum key agreement protocol based on commutative encryption[J]. Quantum Information Processing, 15, 2101-2111(2016).
[9] He Y F, Ma W P. Two-party quantum key agreement against collective noise[J]. Quantum Information Processing, 15, 5023-5035(2016).
[10] He Y F, Ma W P. Two quantum key agreement protocols immune to collective noise[J]. International Journal of Theoretical Physics, 56, 328-338(2017).
[11] Zhou Y H, Xu Y, Yang Y G et al. Measurement-device-independent quantum key agreement against collective noisy channel[J]. International Journal of Theoretical Physics, 61, 201(2022).
[12] Tang J E, Shi L, Wei J H. Controlled quantum key agreement based on maximally three-qubit entangled states[J]. Modern Physics Letters B, 34, 2050201(2020).
[13] He Y F, Yue Y R, Li G Q et al. New controlled quantum key agreement protocols based on Bell states[J]. Journal of China Universities of Posts and Telecommunications, 29, 42-50(2022).
[14] Xu Y G, Wang C N, Cheng K F et al. A novel three-party mutual authentication quantum key agreement protocol with GHZ states[J]. International Journal of Theoretical Physics, 61, 245(2022).
[15] He Y F, Yue Y R, Di M et al. Two-party mutual authentication quantum key agreement protocol[J]. International Journal of Theoretical Physics, 61, 145(2022).
[16] He Y F, Pang Y B, Di M. Mutual authentication quantum key agreement protocol based on Bell states[J]. Quantum Information Processing, 21, 290(2022).
[17] Shukla C, Thapliyal K, Pathak A. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue[J]. Quantum Information Processing, 16, 295(2017).
[18] Liu W J, Chen Z Y, Ji S et al. Multi-party semi-quantum key agreement with delegating quantum computation[J]. International Journal of Theoretical Physics, 56, 3164-3174(2017).
[19] Yan L L, Zhang S B, Chang Y et al. Semi-quantum key agreement and private comparison protocols using bell states[J]. International Journal of Theoretical Physics, 58, 3852-3862(2019).
[20] He Y F, Pang Y B, Di M et al. Two-party semi-quantum key agreement protocol based on G-like state[J]. Chinese Journal of Lasers, 49, 1312001(2022).
[21] Xu T J, Chen Y, Geng M J et al. Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states[J]. Quantum Information Processing, 21, 266(2022).
[22] Liu C, Cheng S, Li H H et al. New semi-quantum key agreement protocol based on the χ-type entanglement states[J]. International Journal of Theoretical Physics, 61, 60(2022).
[23] Zhou N R, Liao Q, Zou X F. Multi-party semi-quantum key agreement protocol based on the four-qubit cluster states[J]. International Journal of Theoretical Physics, 61, 114(2022).
[24] Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles[J]. Physical Review Letters, 86, 910-913(2001).
[25] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons[J]. Physics Letters A, 351, 23-25(2006).
[26] Deng F G, Li X H, Zhou H Y et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Physical Review A, 72, 044302(2005).
[27] Zhou N R, Zhu K N, Wang Y Q. Three-party semi-quantum key agreement protocol[J]. International Journal of Theoretical Physics, 59, 663-676(2020).
[28] Chen L Y, Gong L H, Zhou N R. Two semi-quantum key distribution protocols with G-like states[J]. International Journal of Theoretical Physics, 59, 1884-1896(2020).
[29] Lin J, Hwang T. New circular quantum secret sharing for remote agents[J]. Quantum Information Processing, 12, 685-697(2013).
[30] He Y F, Ma W P. Two-party quantum key agreement based on four-particle GHZ states[J]. International Journal of Quantum Information, 14, 1650007(2016).
[31] Cabello A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 85, 5635-5638(2000).
Get Citation
Copy Citation Text
Yefeng He, Yibo Pang, Man Di, Yuru Yue, Jixiang Liu, Guoqing Li. Four-Party Semi-Quantum Key Agreement Protocol Based on Four-Particle Cluster States[J]. Acta Optica Sinica, 2023, 43(20): 2027001
Category: Quantum Optics
Received: Apr. 17, 2023
Accepted: May. 19, 2023
Published Online: Oct. 23, 2023
The Author Email: Pang Yibo (122979357@qq.com)