Journal of Applied Optics, Volume. 46, Issue 3, 652(2025)

Lightweight pavement damage detection method based on feature mapping contribution degree

Yueming WANG, Yangxu WU, Zhiyu CHANG, and Ping CHEN*
Author Affiliations
  • Shanxi Key Laboratory of Signal Capturing and Processing, North University of China, Taiyuan 030051, China
  • show less
    References(26)

    [1] KHAN M W, OBAIDAT M S, MAHMOOD K et al. Real-time road damage detection and infrastructure evaluation leveraging unmanned aerial vehicles and tiny machine learning[J]. IEEE Internet of Things Journal, 11, 21347-21358(2024).

    [2] XIE Q W, HU X Y, REN L et al. A binocular vision application in IoT: realtime trustworthy road condition detection system in passable area[J]. IEEE Transactions on Industrial Informatics, 19, 973-983(2023).

    [3] YUAN Y C, ISLAM M S, YUAN Y et al. EcRD: edge-cloud computing framework for smart road damage detection and warning[J]. IEEE Internet of Things Journal, 8, 12734-12747(2021).

    [4] LIM R S, LA H M, SHENG W H et al. A robotic crack inspection and mapping system for bridge deck maintenance[J]. IEEE Transactions on Automation Science and Engineering, 11, 367-378(2014).

    [5] LI P, WANG C, LI S M et al. Research on crack detection method of airport runway based on twice-threshold segmentation[C], 1716-1720(2015).

    [6] ZHANG D J, LI Q Q, CHEN Y et al. An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection[J]. Image and Vision Computing, 57, 130-146(2017).

    [7] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [10] WANG W, WU B, YANG S et al. Road damage detection and classification with faster R-CNN[C], 5220-5223(2018).

    [11] SU B, ZHANG H, WU Z et al. FSRDD: An efficient few-shot detector for rare city road damage detection[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 24379-24388(2022).

    [12] YIN T, ZHANG W, KOU J et al. Promoting automatic detection of road damage: a high-resolution dataset, a new approach, and a new evaluation criterion[J]. IEEE Transactions on Automation Science and Engineering, 22, 2472-2484(2025).

    [13] GONAL A, BALIGA B C. Road damage detection and classification using YOLOv5 on an Android device[J]. International Journal for Research in Applied Science & Engineering T, 10, 333-339(2022).

    [14] RASTEGARI M, ORDONEZ V, REDMON J et al. XNOR-net: imagenet classification using binary convolutional neural networks[C], 525-542(2016).

    [15] LI H, KADAV A, DURDANOVIC I et al. Pruning filters for efficient convnets[C], 1-13(2017).

    [17] HE Y, KANG G L, DONG X Y et al. Soft filter pruning for accelerating deep convolutional neural networks[C], 2234-2240(2018).

    [18] LUO J H, WU J X. An entropy-based pruning method for CNN compression[C](2017).

    [19] YE H, ZHANG B, CHEN T et al. Performance-aware approximation of global channel pruning for multitask CNNs[J]. IEEE Trans Pattern Anal Mach Intell, 45, 10267-10284(2023).

    [20] ANDREW H, MARK S, CHEN B et al. Searching for MobileNetV3[C], 1314-1324(2019).

    [21] WANG Y L, FENG W Q, JIANG K et al. Real-time damaged building region detection based on improved YOLOv5s and embedded system from UAV images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 4205-4217(2023).

    [22] CHANG R, LI B Y, DANG J P et al. Real-time intelligent detection system for illegal wearing of on-site power construction worker based on edge-YOLO and low-cost edge devices[J]. Applied Sciences, 13, 8287(2023).

    [23] HU J, SHEN L, ALBANIE S et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell, 42, 2011-2023(2020).

    [24] DEEKSHA A, HIROYA M, KUMAR S G et al. RDD2022: A multi-national image dataset for automatic road damage detection[J]. Geoscience Data Journal, 11, 846-862(2024).

    [25] MA N N, ZHANG X Y, ZHENG H T et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C], 122-138(2018).

    [26] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yueming WANG, Yangxu WU, Zhiyu CHANG, Ping CHEN. Lightweight pavement damage detection method based on feature mapping contribution degree[J]. Journal of Applied Optics, 2025, 46(3): 652

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 22, 2024

    Accepted: --

    Published Online: May. 28, 2025

    The Author Email: Ping CHEN (陈平)

    DOI:10.5768/JAO202546.0302005

    Topics