Journal of Applied Optics, Volume. 46, Issue 3, 652(2025)

Lightweight pavement damage detection method based on feature mapping contribution degree

Yueming WANG, Yangxu WU, Zhiyu CHANG, and Ping CHEN*
Author Affiliations
  • Shanxi Key Laboratory of Signal Capturing and Processing, North University of China, Taiyuan 030051, China
  • show less
    Figures & Tables(18)
    Overall structure diagram of model
    Depthwise separable convolution in MobileNetV3
    M_block: Structure diagram of MobileNetV3
    Lightweight road damage detection network
    Channel weight visualization and activation response diagrams on YOLOv5s-MobileNetv3
    Pruning process based on feature mapping rank
    Adds SE attention mechanism to each convolutional layer on Neck section
    Activation response values under different pruning rates
    Count proportion of ReLU activation that is greater than set threshold (0.5)
    Detection results of proposed algorithm on China_Drone test set
    • Table 1. Damage definition and quantity statistics of China_Drone dataset in RDD2022 dataset

      View table
      View in Article

      Table 1. Damage definition and quantity statistics of China_Drone dataset in RDD2022 dataset

      损伤类型名称标签数量
      纵向裂纹(Longitudinal crack)D001426
      横向裂纹(Transverse crack)D101263
      龟状裂纹(Alligator crack)D20293
      坑洞(Potholes)D4086
      修复过路面(Repaired road)Repair769
    • Table 2. Detection performance of different backbone networks

      View table
      View in Article

      Table 2. Detection performance of different backbone networks

      模型Parameters/MGFLOPsmAPFPS边缘 FPS
      YOLOv5s7.0215.80.72135
      YOLOv5s-ShuffleNetV23.846.80.622815
      YOLOv5s-EfficientNet4.097.70.632319
      YOLOv5s-MobileNetv33.376.00.703526
    • Table 3. Information entropy statistics of different pruning standards for specific level

      View table
      View in Article

      Table 3. Information entropy statistics of different pruning standards for specific level

      剪枝标准层级
      0125101520
      平均秩4.471.251.433.973.912.913.00
      均值3.210.830.450.320.310.520.51
      方差2.361.221.230.670.520.330.54
      中位数1.140.220.350.160.360.380.31
    • Table 4. Detection performance of different pruning rates

      View table
      View in Article

      Table 4. Detection performance of different pruning rates

      剪枝率Parameters/MGFLOPsmAPFPS
      0.13.086.10.64337
      0.22.774.90.61240
      0.51.973.10.54642
      0.80.601.30.46250
      0.0×7+0.1×162.114.60.67639
      0.0×7+0.3×161.822.90.65744
    • Table 5. Visualization of different pruning rates

      View table
      View in Article

      Table 5. Visualization of different pruning rates

      未剪枝0.10.20.50.0×7+0.1×160.0×7+0.3×16
    • Table 6. Improved performance comparison of attention mechanisms

      View table
      View in Article

      Table 6. Improved performance comparison of attention mechanisms

      Pruned-YOLOv5s -MobileNetV3ConvSEC3SEConvASEC3ASEParameters/MGFLOPsmAPFPS
      1.832.90.65744
      2.094.30.66326
      2.043.80.66640
      2.094.30.66826
      2.053.80.67240
      2.074.10.68640
    • Table 7. Heat map presentation of different pruning algorithms

      View table
      View in Article

      Table 7. Heat map presentation of different pruning algorithms

      未剪枝文献[17]文献[25]文献[26]文献[27]本文算法
    • Table 8. Comparison of inference time of each model

      View table
      View in Article

      Table 8. Comparison of inference time of each model

      模型Parameters/MmAPFPS
      YOLOv4-Tiny6.060.6616
      YOLOx-Tiny5.060.6714
      FCOS-Tiny2.080.6534
      本文算法2.060.68640
    Tools

    Get Citation

    Copy Citation Text

    Yueming WANG, Yangxu WU, Zhiyu CHANG, Ping CHEN. Lightweight pavement damage detection method based on feature mapping contribution degree[J]. Journal of Applied Optics, 2025, 46(3): 652

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 22, 2024

    Accepted: --

    Published Online: May. 28, 2025

    The Author Email: Ping CHEN (陈平)

    DOI:10.5768/JAO202546.0302005

    Topics