Spectroscopy and Spectral Analysis, Volume. 45, Issue 4, 932(2025)
Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy
[1] [1] Yang D K, Chen W G, Wan F, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(6): 1770.
[6] [6] Wan Fu, Wang Rui, Ge Hu, et al. Optics Express, 2024, 32(7): 12428.
[7] [7] Molavi H, Yousefpour A, Mirmostafa A, et al. Chromatographia, 2017, 80(7): 1129.
[8] [8] Tang S, Chen W, Jin L, et al. Sensors & Actuators: B. Chemical, 2020, 312: 127998.
[9] [9] Zhou Q, Xu L, Umar A, et al. Sensors & Actuators: B. Chemical, 2018, 256: 656.
[14] [14] Yang D K, Chen W G, Zhou W R, et al. IEEE Access, 2019, 7: 127862.
[17] [17] Ge Hu, Kong Weipin, Wang Rui, et al. Optics Letters, 2023, 48(8): 2186.
[20] [20] Li Dongdong, Zhao Yang, Zhao Yao. Protection and Control of Modern Power Systems, 2022, 7: 22.
Get Citation
Copy Citation Text
CHEN Xin-gang, ZHANG Wen-xuan, MA Zhi-peng, ZHANG Zhi-xian, WAN Fu, AO Yi, ZENG Hui-min. Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2025, 45(4): 932
Received: Jan. 20, 2024
Accepted: Apr. 24, 2025
Published Online: Apr. 24, 2025
The Author Email: MA Zhi-peng (mazhipeng@cqut.edu.cn)