Spectroscopy and Spectral Analysis, Volume. 45, Issue 4, 932(2025)

Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy

CHEN Xin-gang1,2, ZHANG Wen-xuan1, MA Zhi-peng1、*, ZHANG Zhi-xian1, WAN Fu3, AO Yi1, and ZENG Hui-min1
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing400054, China
  • 2Chongqing Energy Internet Engineering Technology Research Center, Chongqing400054, China
  • 3State Key Laboratory of Power Transmission Equipment & System Security and New Technology, (Chongqing University), Chongqing400044, China
  • show less
    Figures & Tables(0)
    Tools

    Get Citation

    Copy Citation Text

    CHEN Xin-gang, ZHANG Wen-xuan, MA Zhi-peng, ZHANG Zhi-xian, WAN Fu, AO Yi, ZENG Hui-min. Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2025, 45(4): 932

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 20, 2024

    Accepted: Apr. 24, 2025

    Published Online: Apr. 24, 2025

    The Author Email: MA Zhi-peng (mazhipeng@cqut.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2025)04-0932-09

    Topics