Chinese Journal of Lasers, Volume. 48, Issue 6, 0602104(2021)

Influence of Multilayer Laser Cladding on the Microstructure and Properties of 30CrMnSiNi2A Steel Substrate

Xiaotong Pang1, Chengwu Yao1、*, Qunfu Gong2, Zhijie Wang2, and Zhuguo Li1
Author Affiliations
  • 1Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2PLA 4724 Plant, Shanghai 200436, China
  • show less
    Figures & Tables(13)
    30CrMnSiNi2A substrate. (a) Metallographic microstructure; (b) local magnification in Fig. 1(a)
    Photographs of required equipment for laser cladding and the geometric shapes and sizes of mechanical specimens for 30CrMnSiNi2A steel in laser quenching and tempering states. (a) Equipment for laser cladding; (b) impact specimens; (c) tensile specimens
    Macroscopic morphology in the cross section of 30CrMnSiNi2A substrates under multiple cladding 30CrMnSiA coating. (a) 1 layer; (b) 2 layers; (c) 3 layers; (d) 4 layers; (e) 5 layers; (f) 6 layers; (e) 7 layers; (e) 8 layers
    Microstructures of laser quenching zone in the 30CrMnSiNi2A substrate (located in Fig. 3). (a) 1 layer, A1 zone; (b) 2 layers, A2 zone; (c) 3 layers, A3 zone; (d) 4 layers, A4 zone; (e) 5 layers, A5 zone; (f) 6 layers, A6 zone; (g) 7 layers, A7 zone; (h) 8 layers, A8 zone
    Microstructures of high temperature tempering zone in the 30CrMnSiNi2A substrate (located in Fig. 3). (a) B1 zone; (b) B2 zone; (c) B3 zone; (d) B4 zone; (e) B5 zone; (f) B6 zone; (e) B7 zone; (e) B8 zone
    Microstructures of partial tempering zone in the 30CrMnSiNi2A substrate (located at C1--C2 of each coating in Fig. 3). (a) C1 zone; (b) C2 zone; (c) C3 zone; (d) C4 zone; (e) C5 zone; (f) C6 zone; (e) C7 zone; (e) C8 zone
    Tensile properties of 30CrMnSiNi2A substrate with HAZ (1 layer to 8 layers) and 30CrMnSiNi2A substrate
    Initiation fracture position of tensile specimens in HAZ of the 30CrMnSiNi2A substrate. (a) High temperature tempering zone (HTTZ) in 1 cladding layer; (b) HTTZ in 2 cladding layers; (c) HTTZ in 3 cladding layers; (d) HTTZ in 4 cladding layers; (e) HTTZ in 5 cladding layers; (f) HTTZ in 6 cladding layers+partial tempering zone (TZ); (g) incomplete quenching zone (IQZ) in 7 cladding layers+HTTZ in 6th-cladding layer; (h) HTTZ of 7th-cladding layer in 8 cladding layers
    Fracture morphology of the tensile specimens of the 30CrMnSiNi2A substrate with HAZ after multiple layer cladding. (a) Macro-morphology of the fracture for 1 cladding layer; (b) crack initiation zone and (c) crack growth zone are shown in Fig. 9(a); (d) macro-morphology of the fracture for 2 cladding layers; (e) crack initiation zone and (f) crack growth zone are shown in Fig. 9(d); (g) macro-morphology of the fracture for 7 cladding layers; (h) crack initiation zone and (i) crack growth zone are shown in Fig. 9 (g); (j) macro-morphology of the fracture for 8 cladding layers; (k) crack initiation zone and (l) crack growth zone are shown in Fig. 9(j)
    Impact toughness of HAZ in 30CrMnSiNi2A substrate according to different cladding layers
    • Table 1. Quenching depth of 30CrMnSiNi2A substrate by multiple laser cladding

      View table

      Table 1. Quenching depth of 30CrMnSiNi2A substrate by multiple laser cladding

      Cladding layer12345678
      Quenching depth /mm1.611.401.241.050.910.770.750.75
    • Table 2. Hardness values of 30CrMnSiNi2A substrate in heat-affected zone

      View table

      Table 2. Hardness values of 30CrMnSiNi2A substrate in heat-affected zone

      Cladding layer12345678
      Hardness /(HV0.5 kgf)Quenching zoneTempering zoneSubstrate643.3640.5634.4636.1611.2583.8576.7598.5
      624.2646.0657.5657.4626.0636.1643.2635.7
      629.6611.2624.5629.6433.5436.6428.6430.9
      488.6457.5459.2446.1446.1430.4452.6459.2
      454.2467.7447.1435.6452.6456.2447.7411.3
      530.2487.2469.4467.7462.6474.3464.6417.1
      569.7560.5540.7511.9516.3506.1481.8511.9
      567.4567.4567.4560.5556.0538.6524.0528.1
      581.4588.6576.7576.7583.8565.1574.3569.7
      596.0601.0598.5586.2591.1588.6591.1583.8
      Average of hardness in HAZ /(HV0.5 kgf)561.7551.7548.9540.6506.9503.4502.4499.1
    • Table 3. Product of strength and elongation (PSE) of 30CrMnSiNi2A substrates and substrates with different HAZs

      View table

      Table 3. Product of strength and elongation (PSE) of 30CrMnSiNi2A substrates and substrates with different HAZs

      Cladding layer012345678
      Tensile strength /MPa176716021531152815121488146114981427
      Elongation /%5.562.252.102.272.322.352.442.242.85
      PSE /(MPa·%)9824.53604.53215.13468.53507.83496.83564.83355.54066.9
    Tools

    Get Citation

    Copy Citation Text

    Xiaotong Pang, Chengwu Yao, Qunfu Gong, Zhijie Wang, Zhuguo Li. Influence of Multilayer Laser Cladding on the Microstructure and Properties of 30CrMnSiNi2A Steel Substrate[J]. Chinese Journal of Lasers, 2021, 48(6): 0602104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Material Processing

    Received: Jul. 1, 2020

    Accepted: Aug. 21, 2020

    Published Online: Mar. 18, 2021

    The Author Email: Yao Chengwu (yaochwu@sjtu.edu.cn)

    DOI:10.3788/CJL202148.0602104

    Topics