Chinese Journal of Lasers, Volume. 51, Issue 4, 0402407(2024)

Review of Multi‑Scale Theoretical Research on Ultrashort Laser Processing and Coupling Model Construction (Invited)

Wenjun Wang1,2、*, Aifei Pan1,2, and Xuesong Mei1,2
Author Affiliations
  • 1School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710064, Shaanxi , China
  • 2State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710064, Shaanxi , China
  • show less
    References(99)

    [1] Momma C, Nolte S, Chichkov B N et al. Precise laser ablation with ultrashort pulses[J]. Applied Surface Science, 109/110, 15-19(1997).

    [2] Küper S, Stuke M. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses[J]. MRS Online Proceedings Library, 129, 375-384(1988).

    [3] Hamad A H. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution[M]. High energy and short pulse lasers(2016).

    [4] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 97, 081102(2010).

    [5] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).

    [6] Rethfeld B, Ivanov D S, Garcia ME et al. Modelling ultrafast laser ablation[J]. Journal of Physics D Applied Physics, 50, 193001(2017).

    [7] Shugaev M V, Wu C P, Armbruster O et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 41, 960-968(2016).

    [8] Wang R D, Zobeiri H, Xie Y S et al. Distinguishing optical and acoustic phonon temperatures and their energy coupling factor under photon excitation in nm 2D materials[J]. Advanced Science, 7, 2000097(2020).

    [9] Hohlfeld J, Wellershoff S S, Güdde J et al. Electron and lattice dynamics following optical excitation of metals[J]. Chemical Physics, 251, 237-258(2000).

    [10] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light, Science & Applications, 7, 17134(2018).

    [11] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [12] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016).

    [13] Li S C. Investigation of ultrafast electronic behavior in metal irradiated by femtosecond laser[D](2016).

    [14] Yamada A, Yabana K. Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: pulsed light, electron, and lattice motions in crystalline solids[J]. Physical Review B, 99, 245103(2019).

    [15] Kachan E, Tsaturyan A, Stoian R et al. First-principles study of ultrafast bandgap dynamics in laser-excited α‑quartz[J]. The European Physical Journal Special Topics, 232, 2241-2245(2023).

    [16] Shinohara Y, Yabana K, Kawashita Y et al. Coherent phonon generation in time-dependent density functional theory[J]. Physical Review B, 82, 155110(2010).

    [17] Yamada A, Yabana K. Energy transfer from intense laser pulse to dielectrics in time-dependent density functional theory[J]. The European Physical Journal D, 73, 87(2019).

    [18] Wachter G, Lemell C, Burgdörfer J et al. Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials[J]. Physical Review Letters, 113, 087401(2014).

    [19] Gao L L, Wang F, Jiang L et al. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser[J]. International Journal of Modern Physics B, 29, 1550033(2015).

    [20] Tancogne-Dejean N, Mücke O D, Kärtner F X et al. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics[J]. Nature Communications, 8, 745(2017).

    [21] Klemke N, Tancogne-Dejean N, Rossi G M et al. Polarization-state-resolved high-harmonic spectroscopy of solids[J]. Nature Communications, 10, 1319(2019).

    [22] Duchateau G, Yamada A, Yabana K. Electron dynamics in α-quartz induced by two-color 10-femtosecond laser pulses[J]. Physical Review B, 105, 165128(2022).

    [23] Wang C, Jiang L, Wang F et al. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation[J]. Journal of Physics: Condensed Matter, 24, 275801(2012).

    [24] Zahra N, Nicolas T D, Hamed M et al. High harmonics and isolated attosecond pulses from MgO[J]. Physical Review Applied, 15, 014013(2021).

    [25] Tancogne-Dejean N, Sentef M A, Rubio A. Ultrafast transient absorption spectroscopy of the charge-transfer insulator NiO: beyond the dynamical Franz-Keldysh effect[J]. Physical Review B, 102, 115106(2020).

    [26] Bertsch G F, Iwata J I, Rubio A et al. Real-space, real-time method for the dielectric function[J]. Physical Review B, 62, 7998-8002(2000).

    [27] Zhang X Q, Wang F, Jiang L et al. Manipulation of the dielectric properties of diamond by an ultrashort laser pulse[J]. Physical Review B, 95, 184301(2017).

    [28] Sato S A, Hübener H, de Giovannini U et al. Ab initio simulation of attosecond transient absorption spectroscopy in two-dimensional materials[J]. Applied Sciences, 8, 1777(2018).

    [29] Li Z, Wang C, Kang W et al. Temperature and compression effects on electron heat capacity and electron-phonon coupling in aluminum and beryllium: insights from ab initio simulations[J]. Physics of Plasmas, 22, 112705(2015).

    [30] Bévillon E, Stoian R, Colombier J P. Nonequilibrium optical properties of transition metals upon ultrafast electron heating[J]. Journal of Physics: Condensed Matter, 30, 385401(2018).

    [31] Lin Z B, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Physical Review B, 77, 075133(2008).

    [32] Bévillon E, Colombier J P, Recoules V et al. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals[J]. Applied Surface Science, 336, 79-84(2015).

    [33] Bévillon E, Colombier J P, Dutta B et al. Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316L stainless steel[J]. The Journal of Physical Chemistry C, 119, 11438-11446(2015).

    [34] Sato S A, Shinohara Y, Otobe T et al. Dielectric response of laser-excited silicon at finite electron temperature[J]. Physical Review B, 90, 174303(2014).

    [35] Marques M A L, Maitra N T, Nogueira F M et al[M]. Fundamentals of time-dependent density functional theory(2012).

    [36] Sinha-Roy R, García-González P, Lozano X L et al. Identifying electronic modes by Fourier transform from δ-kick time-evolution TDDFT calculations[J]. Journal of Chemical Theory and Computation, 14, 6417-6426(2018).

    [37] Krumland J, Valencia A M, Pittalis S et al. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules[J]. The Journal of Chemical Physics, 153, 054106(2020).

    [38] Haruyama J, Hu C P, Watanabe K. First-principles molecular-dynamics simulation of biphenyl under strong laser pulses by time-dependent density-functional theory[J]. Physical Review A, 85, 062511(2012).

    [39] Li X J, Cheng X L, Zhang H. Ab initio dynamics simulation of laser-induced photodissociation of phenol[J]. Physical Chemistry Chemical Physics: PCCP, 23, 12718-12730(2021).

    [40] Chen L, Wang L, Jiang K et al. Optically induced multistage phase transition in coherent phonon-dominated a-GeTe[J]. The Journal of Physical Chemistry Letters, 14, 5760-5767(2023).

    [41] Guan M X, Liu X B, Chen D Q et al. Optical control of multistage phase transition via phonon coupling in MoTe2[J]. Physical Review Letters, 128, 015702(2022).

    [42] Chen L, Cui A Y, Li M et al. Optical excitation-induced ultrafast amorphization in the Y-Sb-Te alloy system: insights from real-time time-dependent DFT with molecular dynamics calculations[J]. Physical Review B, 106, 214110(2022).

    [43] Xu J Y, Chen D Q, Meng S. Decoupled ultrafast electronic and structural phase transitions in photoexcited monoclinic VO2[J]. Science Advances, 8, eadd2392(2022).

    [44] Miyamoto Y. Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals[J]. Scientific Reports, 11, 14626(2021).

    [45] Ji P F, Zhang Y W. Femtosecond laser processing of germanium: an ab initio molecular dynamics study[J]. Journal of Physics D: Applied Physics, 46, 495108(2013).

    [46] Zijlstra E S, Zier T, Bauerhenne B et al. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: an ab initio molecular dynamics study[J]. Applied Physics A, 114, 1-9(2014).

    [47] Li X B, Liu X Q, Liu X et al. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys[J]. Physical Review Letters, 107, 015501(2011).

    [48] Qiao C, Bai K W, Xu M et al. Ultrafast crystallization mechanism of amorphous Ge15Sb85 unraveled by pressure-driven simulations[J]. Acta Materialia, 216, 117123(2021).

    [49] Zhang K, Xu M, Li N N et al. Superconducting phase induced by a local structure transition in amorphous Sb2Se3 under high pressure[J]. Physical Review Letters, 127, 127002(2021).

    [50] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).

    [51] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).

    [52] Wang M L, Mei W, Wang Y. Simulation of femtosecond laser ablation sapphire based on free electron density[J]. Optics & Laser Technology, 113, 123-128(2019).

    [53] Itina T E, Shcheblanov N. Electronic excitation in femtosecond laser interactions with wide-band-gap materials[J]. Applied Physics A, 98, 769-775(2010).

    [54] Yuan Y P, Jiang L, Li X et al. Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains[J]. Applied Physics A, 111, 813-819(2013).

    [55] Derrien T J Y, Krüger J, Itina T E et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon[J]. Optics Express, 21, 29643-29655(2013).

    [56] Colombier J P, Rudenko A, Silaeva E et al. Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers[J]. Physical Review Research, 2, 043080(2020).

    [57] Derrien T J Y, Krüger J, Itina T E et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes[J]. Applied Physics A, 117, 77-81(2014).

    [58] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics[J]. Journal of Applied Physics, 104, 093101(2008).

    [59] Zhang K H, Jiang L, Li X et al. Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons[J]. Journal of Physics D: Applied Physics, 47, 435105(2014).

    [60] Kaganov M. Relaxation between electrons and the crystalline lattice[J]. Soviet Physics: JETP, 4, 173-178(1957).

    [61] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 127, 1167-1173(2005).

    [62] Chen H, Wei C Y, Cao Z et al. Study of femtosecond laser ablation and polishing process on RB-SiC surface[J]. Chinese Journal of Lasers, 50, 2402203(2023).

    [63] Zhang Z, Song Q, Zhang K P et al. Simulation and experimental research on flat top femtosecond laser grooving of silicon wafer[J]. Chinese Journal of Lasers, 50, 2002202(2023).

    [64] Waldecker L, Bertoni R, Ernstorfer R et al. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation[J]. Physical Review X, 6, 021003(2016).

    [65] Christensen B H, Vestentoft K, Balling P. Short-pulse ablation rates and the two-temperature model[J]. Applied Surface Science, 253, 6347-6352(2007).

    [66] Groeneveld R H M, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Physical Review B, 51, 11433-11445(1995).

    [67] Schmidt V, Husinsky W, Betz G. Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model[J]. Applied Surface Science, 197/198, 145-155(2002).

    [68] Chang C L, Cheng C W, Chen J K. Femtosecond laser-induced periodic surface structures of copper: experimental and modeling comparison[J]. Applied Surface Science, 469, 904-910(2019).

    [69] Dong Y W, Wu Z P, You Y C et al. Numerical simulation of multi-pulsed femtosecond laser ablation: effect of a moving laser focus[J]. Optical Materials Express, 9, 4194-4208(2019).

    [70] Ritzmann U, Oppeneer P M, Maldonado P. Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation[J]. Physical Review B, 102, 214305(2020).

    [71] Rohde G, Stange A, Müller A et al. Ultrafast formation of a Fermi-Dirac distributed electron gas[J]. Physical Review Letters, 121, 256401(2018).

    [72] Silaeva E P, Bèvillon E, Stoian R et al. Ultrafast electron dynamics and orbital-dependent thermalization in photoexcited metals[J]. Physical Review B, 98, 094306(2018).

    [73] Mueller B Y, Rethfeld B. Thermodynamic μT model of ultrafast magnetization dynamics[J]. Physical Review B, 90, 144420(2014).

    [74] Lian C, Zhang S B, Meng S. Ab initio evidence for nonthermal characteristics in ultrafast laser melting[J]. Physical Review B, 94, 184310(2016).

    [75] Martyniuk M M. The role of the phase explosion of metals in the explosive electron emission process[J]. Radiotekhnika i Elektronika, 25, 157-167(1980).

    [76] Park M, Gu Y R, Mao X L et al. Mechanisms of ultrafast GHz burst fs laser ablation[J]. Science Advances, 9, eadf6397(2023).

    [77] Wang X W, Xu X F. Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction[J]. International Journal of Heat and Mass Transfer, 46, 45-53(2003).

    [78] Wang X W. Large-scale molecular dynamics simulation of surface nanostructuring with a laser-assisted scanning tunnelling microscope[J]. Journal of Physics D Applied Physics, 38, 1805-1823(2005).

    [79] Zhakhovskii V V, Inogamov N A, Petrov Y V et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 255, 9592-9596(2009).

    [80] Li G T, Yu T Y, Wu P et al. Molecular dynamics simulation of NiTi shape memory alloys produced by laser powder bed fusion: laser parameters on phase transformation behavior[J]. Materials, 16, 409(2023).

    [81] Zhao J G, Zhang C, Liu F et al. Understanding femtosecond laser internal scribing of diamond by atomic simulation: phase transition, structure and property[J]. Carbon, 175, 352-363(2021).

    [82] Yang C J, Wang Y G, Xu X F. Molecular dynamics studies of ultrafast laser-induced phase and structural change in crystalline silicon[J]. International Journal of Heat and Mass Transfer, 55, 6060-6066(2012).

    [83] Wu J Y, Yang L J, Li Y J et al. Microscopic mechanisms of femtosecond laser ablation of HMX from reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 124, 11681-11693(2020).

    [84] Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Physical Review B, 68, 064114(2003).

    [85] Wu C P, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 114, 11-32(2014).

    [86] Zhang Z, Yang Z N, Wang C C et al. Mechanisms of femtosecond laser ablation of Ni3Al: molecular dynamics study[J]. Optics & Laser Technology, 133, 106505(2021).

    [87] Rouleau C M, Shih C Y, Wu C et al. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: time-resolved measurements and molecular dynamics simulations[J]. Applied Physics Letters, 104, 193106(2014).

    [88] Wen J C, Zhang L, Wu H et al. Molecular dynamics simulation of aluminum-fused silica interface shot by femtosecond laser[J]. Laser & Optoelectronics Progress, 60, 0114011(2023).

    [89] Shih C Y, Gnilitskyi I, Shugaev M V et al. Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles[J]. Nanoscale, 12, 7674-7687(2020).

    [90] Ivanov D S, Lipp V P, Blumenstein A et al. Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold[J]. Physical Review Applied, 4, 064006(2015).

    [91] Guo J W, Ji P F, Jiang L et al. Femtosecond laser sintering Al nanoparticles: a multiscale investigation of combined molecular dynamics simulation and two-temperature model[J]. Powder Technology, 407, 117682(2022).

    [92] Mo M Z, Chen Z, Li R K et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction[J]. Science, 360, 1451-1455(2018).

    [93] Arefev M I, Shugaev M V, Zhigilei L V. Kinetics of laser-induced melting of thin gold film: how slow can it get?[J]. Science Advances, 8, eabo2621(2022).

    [94] Zhan N W, Guo B S, Jiang L et al. Multiphysics modeling of femtosecond laser-copper interaction: from electron dynamics to plasma eruption[J]. Physics of Fluids, 35, 012003(2023).

    [95] Rudenko A, Mauclair C, Garrelie F et al. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations[J]. Physical Review B, 99, 235412(2019).

    [96] Rudenko A, Abou-Saleh A, Pigeon F et al. High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces[J]. Acta Materialia, 194, 93-105(2020).

    [97] Allahyari E, Nivas J J, Skoulas E et al. On the formation and features of the supra-wavelength grooves generated during femtosecond laser surface structuring of silicon[J]. Applied Surface Science, 528, 146607(2020).

    [98] Tsibidis G D, Skoulas E, Papadopoulos A et al. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers[J]. Physical Review B, 94, 081305(2016).

    [99] Rudenko A, Colombier J P, Itina T E et al. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics[J]. Advanced Optical Materials, 9, 2100973(2021).

    Tools

    Get Citation

    Copy Citation Text

    Wenjun Wang, Aifei Pan, Xuesong Mei. Review of Multi‑Scale Theoretical Research on Ultrashort Laser Processing and Coupling Model Construction (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402407

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Micro-Nano Manufacturing

    Received: Nov. 1, 2023

    Accepted: Jan. 2, 2024

    Published Online: Feb. 19, 2024

    The Author Email: Wang Wenjun (wenjunwang@mail.xjtu.edu.cn)

    DOI:10.3788/CJL231352

    CSTR:32183.14.CJL231352

    Topics