Chinese Journal of Lasers, Volume. 51, Issue 4, 0402407(2024)
Review of Multi‑Scale Theoretical Research on Ultrashort Laser Processing and Coupling Model Construction (Invited)
[1] Momma C, Nolte S, Chichkov B N et al. Precise laser ablation with ultrashort pulses[J]. Applied Surface Science, 109/110, 15-19(1997).
[2] Küper S, Stuke M. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses[J]. MRS Online Proceedings Library, 129, 375-384(1988).
[3] Hamad A H. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution[M]. High energy and short pulse lasers(2016).
[4] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 97, 081102(2010).
[5] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).
[6] Rethfeld B, Ivanov D S, Garcia ME et al. Modelling ultrafast laser ablation[J]. Journal of Physics D Applied Physics, 50, 193001(2017).
[7] Shugaev M V, Wu C P, Armbruster O et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 41, 960-968(2016).
[8] Wang R D, Zobeiri H, Xie Y S et al. Distinguishing optical and acoustic phonon temperatures and their energy coupling factor under photon excitation in nm 2D materials[J]. Advanced Science, 7, 2000097(2020).
[9] Hohlfeld J, Wellershoff S S, Güdde J et al. Electron and lattice dynamics following optical excitation of metals[J]. Chemical Physics, 251, 237-258(2000).
[10] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light, Science & Applications, 7, 17134(2018).
[11] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).
[12] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016).
[13] Li S C. Investigation of ultrafast electronic behavior in metal irradiated by femtosecond laser[D](2016).
[14] Yamada A, Yabana K. Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: pulsed light, electron, and lattice motions in crystalline solids[J]. Physical Review B, 99, 245103(2019).
[15] Kachan E, Tsaturyan A, Stoian R et al. First-principles study of ultrafast bandgap dynamics in laser-excited α‑quartz[J]. The European Physical Journal Special Topics, 232, 2241-2245(2023).
[16] Shinohara Y, Yabana K, Kawashita Y et al. Coherent phonon generation in time-dependent density functional theory[J]. Physical Review B, 82, 155110(2010).
[17] Yamada A, Yabana K. Energy transfer from intense laser pulse to dielectrics in time-dependent density functional theory[J]. The European Physical Journal D, 73, 87(2019).
[18] Wachter G, Lemell C, Burgdörfer J et al. Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials[J]. Physical Review Letters, 113, 087401(2014).
[19] Gao L L, Wang F, Jiang L et al. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser[J]. International Journal of Modern Physics B, 29, 1550033(2015).
[20] Tancogne-Dejean N, Mücke O D, Kärtner F X et al. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics[J]. Nature Communications, 8, 745(2017).
[21] Klemke N, Tancogne-Dejean N, Rossi G M et al. Polarization-state-resolved high-harmonic spectroscopy of solids[J]. Nature Communications, 10, 1319(2019).
[22] Duchateau G, Yamada A, Yabana K. Electron dynamics in α-quartz induced by two-color 10-femtosecond laser pulses[J]. Physical Review B, 105, 165128(2022).
[23] Wang C, Jiang L, Wang F et al. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation[J]. Journal of Physics: Condensed Matter, 24, 275801(2012).
[24] Zahra N, Nicolas T D, Hamed M et al. High harmonics and isolated attosecond pulses from MgO[J]. Physical Review Applied, 15, 014013(2021).
[25] Tancogne-Dejean N, Sentef M A, Rubio A. Ultrafast transient absorption spectroscopy of the charge-transfer insulator NiO: beyond the dynamical Franz-Keldysh effect[J]. Physical Review B, 102, 115106(2020).
[26] Bertsch G F, Iwata J I, Rubio A et al. Real-space, real-time method for the dielectric function[J]. Physical Review B, 62, 7998-8002(2000).
[27] Zhang X Q, Wang F, Jiang L et al. Manipulation of the dielectric properties of diamond by an ultrashort laser pulse[J]. Physical Review B, 95, 184301(2017).
[28] Sato S A, Hübener H, de Giovannini U et al. Ab initio simulation of attosecond transient absorption spectroscopy in two-dimensional materials[J]. Applied Sciences, 8, 1777(2018).
[29] Li Z, Wang C, Kang W et al. Temperature and compression effects on electron heat capacity and electron-phonon coupling in aluminum and beryllium: insights from ab initio simulations[J]. Physics of Plasmas, 22, 112705(2015).
[30] Bévillon E, Stoian R, Colombier J P. Nonequilibrium optical properties of transition metals upon ultrafast electron heating[J]. Journal of Physics: Condensed Matter, 30, 385401(2018).
[31] Lin Z B, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Physical Review B, 77, 075133(2008).
[32] Bévillon E, Colombier J P, Recoules V et al. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals[J]. Applied Surface Science, 336, 79-84(2015).
[33] Bévillon E, Colombier J P, Dutta B et al. Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316L stainless steel[J]. The Journal of Physical Chemistry C, 119, 11438-11446(2015).
[34] Sato S A, Shinohara Y, Otobe T et al. Dielectric response of laser-excited silicon at finite electron temperature[J]. Physical Review B, 90, 174303(2014).
[35] Marques M A L, Maitra N T, Nogueira F M et al[M]. Fundamentals of time-dependent density functional theory(2012).
[36] Sinha-Roy R, García-González P, Lozano X L et al. Identifying electronic modes by Fourier transform from δ-kick time-evolution TDDFT calculations[J]. Journal of Chemical Theory and Computation, 14, 6417-6426(2018).
[37] Krumland J, Valencia A M, Pittalis S et al. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules[J]. The Journal of Chemical Physics, 153, 054106(2020).
[38] Haruyama J, Hu C P, Watanabe K. First-principles molecular-dynamics simulation of biphenyl under strong laser pulses by time-dependent density-functional theory[J]. Physical Review A, 85, 062511(2012).
[39] Li X J, Cheng X L, Zhang H. Ab initio dynamics simulation of laser-induced photodissociation of phenol[J]. Physical Chemistry Chemical Physics: PCCP, 23, 12718-12730(2021).
[40] Chen L, Wang L, Jiang K et al. Optically induced multistage phase transition in coherent phonon-dominated a-GeTe[J]. The Journal of Physical Chemistry Letters, 14, 5760-5767(2023).
[41] Guan M X, Liu X B, Chen D Q et al. Optical control of multistage phase transition via phonon coupling in MoTe2[J]. Physical Review Letters, 128, 015702(2022).
[42] Chen L, Cui A Y, Li M et al. Optical excitation-induced ultrafast amorphization in the Y-Sb-Te alloy system: insights from real-time time-dependent DFT with molecular dynamics calculations[J]. Physical Review B, 106, 214110(2022).
[43] Xu J Y, Chen D Q, Meng S. Decoupled ultrafast electronic and structural phase transitions in photoexcited monoclinic VO2[J]. Science Advances, 8, eadd2392(2022).
[44] Miyamoto Y. Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals[J]. Scientific Reports, 11, 14626(2021).
[45] Ji P F, Zhang Y W. Femtosecond laser processing of germanium: an ab initio molecular dynamics study[J]. Journal of Physics D: Applied Physics, 46, 495108(2013).
[46] Zijlstra E S, Zier T, Bauerhenne B et al. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: an ab initio molecular dynamics study[J]. Applied Physics A, 114, 1-9(2014).
[47] Li X B, Liu X Q, Liu X et al. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys[J]. Physical Review Letters, 107, 015501(2011).
[48] Qiao C, Bai K W, Xu M et al. Ultrafast crystallization mechanism of amorphous Ge15Sb85 unraveled by pressure-driven simulations[J]. Acta Materialia, 216, 117123(2021).
[49] Zhang K, Xu M, Li N N et al. Superconducting phase induced by a local structure transition in amorphous Sb2Se3 under high pressure[J]. Physical Review Letters, 127, 127002(2021).
[50] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).
[51] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).
[52] Wang M L, Mei W, Wang Y. Simulation of femtosecond laser ablation sapphire based on free electron density[J]. Optics & Laser Technology, 113, 123-128(2019).
[53] Itina T E, Shcheblanov N. Electronic excitation in femtosecond laser interactions with wide-band-gap materials[J]. Applied Physics A, 98, 769-775(2010).
[54] Yuan Y P, Jiang L, Li X et al. Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains[J]. Applied Physics A, 111, 813-819(2013).
[55] Derrien T J Y, Krüger J, Itina T E et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon[J]. Optics Express, 21, 29643-29655(2013).
[56] Colombier J P, Rudenko A, Silaeva E et al. Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers[J]. Physical Review Research, 2, 043080(2020).
[57] Derrien T J Y, Krüger J, Itina T E et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes[J]. Applied Physics A, 117, 77-81(2014).
[58] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics[J]. Journal of Applied Physics, 104, 093101(2008).
[59] Zhang K H, Jiang L, Li X et al. Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons[J]. Journal of Physics D: Applied Physics, 47, 435105(2014).
[60] Kaganov M. Relaxation between electrons and the crystalline lattice[J]. Soviet Physics: JETP, 4, 173-178(1957).
[61] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 127, 1167-1173(2005).
[62] Chen H, Wei C Y, Cao Z et al. Study of femtosecond laser ablation and polishing process on RB-SiC surface[J]. Chinese Journal of Lasers, 50, 2402203(2023).
[63] Zhang Z, Song Q, Zhang K P et al. Simulation and experimental research on flat top femtosecond laser grooving of silicon wafer[J]. Chinese Journal of Lasers, 50, 2002202(2023).
[64] Waldecker L, Bertoni R, Ernstorfer R et al. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation[J]. Physical Review X, 6, 021003(2016).
[65] Christensen B H, Vestentoft K, Balling P. Short-pulse ablation rates and the two-temperature model[J]. Applied Surface Science, 253, 6347-6352(2007).
[66] Groeneveld R H M, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Physical Review B, 51, 11433-11445(1995).
[67] Schmidt V, Husinsky W, Betz G. Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model[J]. Applied Surface Science, 197/198, 145-155(2002).
[68] Chang C L, Cheng C W, Chen J K. Femtosecond laser-induced periodic surface structures of copper: experimental and modeling comparison[J]. Applied Surface Science, 469, 904-910(2019).
[69] Dong Y W, Wu Z P, You Y C et al. Numerical simulation of multi-pulsed femtosecond laser ablation: effect of a moving laser focus[J]. Optical Materials Express, 9, 4194-4208(2019).
[70] Ritzmann U, Oppeneer P M, Maldonado P. Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation[J]. Physical Review B, 102, 214305(2020).
[71] Rohde G, Stange A, Müller A et al. Ultrafast formation of a Fermi-Dirac distributed electron gas[J]. Physical Review Letters, 121, 256401(2018).
[72] Silaeva E P, Bèvillon E, Stoian R et al. Ultrafast electron dynamics and orbital-dependent thermalization in photoexcited metals[J]. Physical Review B, 98, 094306(2018).
[73] Mueller B Y, Rethfeld B. Thermodynamic μT model of ultrafast magnetization dynamics[J]. Physical Review B, 90, 144420(2014).
[74] Lian C, Zhang S B, Meng S. Ab initio evidence for nonthermal characteristics in ultrafast laser melting[J]. Physical Review B, 94, 184310(2016).
[75] Martyniuk M M. The role of the phase explosion of metals in the explosive electron emission process[J]. Radiotekhnika i Elektronika, 25, 157-167(1980).
[76] Park M, Gu Y R, Mao X L et al. Mechanisms of ultrafast GHz burst fs laser ablation[J]. Science Advances, 9, eadf6397(2023).
[77] Wang X W, Xu X F. Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction[J]. International Journal of Heat and Mass Transfer, 46, 45-53(2003).
[78] Wang X W. Large-scale molecular dynamics simulation of surface nanostructuring with a laser-assisted scanning tunnelling microscope[J]. Journal of Physics D Applied Physics, 38, 1805-1823(2005).
[79] Zhakhovskii V V, Inogamov N A, Petrov Y V et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials[J]. Applied Surface Science, 255, 9592-9596(2009).
[80] Li G T, Yu T Y, Wu P et al. Molecular dynamics simulation of NiTi shape memory alloys produced by laser powder bed fusion: laser parameters on phase transformation behavior[J]. Materials, 16, 409(2023).
[81] Zhao J G, Zhang C, Liu F et al. Understanding femtosecond laser internal scribing of diamond by atomic simulation: phase transition, structure and property[J]. Carbon, 175, 352-363(2021).
[82] Yang C J, Wang Y G, Xu X F. Molecular dynamics studies of ultrafast laser-induced phase and structural change in crystalline silicon[J]. International Journal of Heat and Mass Transfer, 55, 6060-6066(2012).
[83] Wu J Y, Yang L J, Li Y J et al. Microscopic mechanisms of femtosecond laser ablation of HMX from reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 124, 11681-11693(2020).
[84] Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Physical Review B, 68, 064114(2003).
[85] Wu C P, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 114, 11-32(2014).
[86] Zhang Z, Yang Z N, Wang C C et al. Mechanisms of femtosecond laser ablation of Ni3Al: molecular dynamics study[J]. Optics & Laser Technology, 133, 106505(2021).
[87] Rouleau C M, Shih C Y, Wu C et al. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: time-resolved measurements and molecular dynamics simulations[J]. Applied Physics Letters, 104, 193106(2014).
[88] Wen J C, Zhang L, Wu H et al. Molecular dynamics simulation of aluminum-fused silica interface shot by femtosecond laser[J]. Laser & Optoelectronics Progress, 60, 0114011(2023).
[89] Shih C Y, Gnilitskyi I, Shugaev M V et al. Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles[J]. Nanoscale, 12, 7674-7687(2020).
[90] Ivanov D S, Lipp V P, Blumenstein A et al. Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold[J]. Physical Review Applied, 4, 064006(2015).
[91] Guo J W, Ji P F, Jiang L et al. Femtosecond laser sintering Al nanoparticles: a multiscale investigation of combined molecular dynamics simulation and two-temperature model[J]. Powder Technology, 407, 117682(2022).
[92] Mo M Z, Chen Z, Li R K et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction[J]. Science, 360, 1451-1455(2018).
[93] Arefev M I, Shugaev M V, Zhigilei L V. Kinetics of laser-induced melting of thin gold film: how slow can it get?[J]. Science Advances, 8, eabo2621(2022).
[94] Zhan N W, Guo B S, Jiang L et al. Multiphysics modeling of femtosecond laser-copper interaction: from electron dynamics to plasma eruption[J]. Physics of Fluids, 35, 012003(2023).
[95] Rudenko A, Mauclair C, Garrelie F et al. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations[J]. Physical Review B, 99, 235412(2019).
[96] Rudenko A, Abou-Saleh A, Pigeon F et al. High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces[J]. Acta Materialia, 194, 93-105(2020).
[97] Allahyari E, Nivas J J, Skoulas E et al. On the formation and features of the supra-wavelength grooves generated during femtosecond laser surface structuring of silicon[J]. Applied Surface Science, 528, 146607(2020).
[98] Tsibidis G D, Skoulas E, Papadopoulos A et al. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers[J]. Physical Review B, 94, 081305(2016).
[99] Rudenko A, Colombier J P, Itina T E et al. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics[J]. Advanced Optical Materials, 9, 2100973(2021).
Get Citation
Copy Citation Text
Wenjun Wang, Aifei Pan, Xuesong Mei. Review of Multi‑Scale Theoretical Research on Ultrashort Laser Processing and Coupling Model Construction (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402407
Category: Laser Micro-Nano Manufacturing
Received: Nov. 1, 2023
Accepted: Jan. 2, 2024
Published Online: Feb. 19, 2024
The Author Email: Wang Wenjun (wenjunwang@mail.xjtu.edu.cn)
CSTR:32183.14.CJL231352