Journal of Synthetic Crystals, Volume. 50, Issue 3, 509(2021)

Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition

YOU Jiachuan1,2、*, ZHAO Lei1,2,3, DIAO Hongwei1, and WANG Wenjing1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(25)

    [1] [1] MUKHOPADHYAY S, RAY S. Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties[J]. Applied Surface Science, 2011, 257(23): 9717-9723.

    [2] [2] SAMANTA A, DAS D. Changes in optical and electrical phenomena correlated to structural configuration in nanocrystalline silicon network[J]. Journal of the Electrochemical Society, 2011, 158(11): H1138.

    [3] [3] GAO D Z, LI Y, ZHANG B H, et al. Structural andphotoluminescence properties of nc-SiOx∶H/a-SiOx∶H multilayer films deposited at low temperature by VHF-PECVD technique[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(3): 806-812.

    [4] [4] YANG J, JO H, CHOI S W, et al. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system[J]. Journal of Materials Science & Technology, 2019, 35(8): 1563-1569.

    [5] [5] DING K N, AEBERHARD U, SMIRNOV V, et al. Widegap microcrystalline silicon oxide emitter for a- SiOx∶H/c-Si heterojunction solar cells[J]. Japanese Journal of Applied Physics, 2013, 52(12R): 122304.

    [6] [6] TAN H R, BABAL P, ZEMAN M, et al. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 132: 597-605.

    [7] [7] RICHTER A, SMIRNOV V, LAMBERTZ A, et al. Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 174: 196-201.

    [8] [8] DAS C, LAMBERTZ A, HUEPKES J, et al. A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells[J]. Applied Physics Letters, 2008, 92(5): 053509.

    [9] [9] LAMBERTZ A, SMIRNOV V, MERDZHANOVA T, et al. Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules[J]. Solar Energy Materials and Solar Cells, 2013, 119: 134-143.

    [10] [10] LAMBERTZ A, GRUNDLER T, FINGER F. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells[J]. Journal of Applied Physics, 2011, 109(11): 113109.

    [11] [11] BEYER W. Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2003, 78(1/2/3/4): 235-267.

    [12] [12] VET B, ZEMAN M. Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si∶H solar cells[J]. Thin Solid Films, 2008, 516(20): 6873-6876.

    [13] [13] JEON M, YOSHIBA S, KAMISAKO K. Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique[J]. Current Applied Physics, 2010, 10(2): S237-S240.

    [14] [14] RUAN T, QU M H, WANG J Q, et al. Effect of deposition temperature of a-Si∶H layer on the performance of silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13330-13335.

    [15] [15] DAS D, BARUA A K. Properties of a-SiO∶H films prepared by RF glow discharge[J]. Solar Energy Materials and Solar Cells, 2000, 60(2): 167-179.

    [16] [16] LUNA-LPEZ J A, GARCA-SALGADO G, DAZ-BECERRIL T, et al. FTIR, AFM and PL properties of thin SiOx films deposited by HFCVD[J]. Materials Science and Engineering: B, 2010, 174(1/2/3): 88-92.

    [17] [17] HE Y P, HUANG H B, ZHOU L, et al. Effect of substrate temperature and post-deposition annealing on intrinsic a-SiOx∶H film for n-Cz-Si wafer passivation[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4659-4664.

    [18] [18] WANG S, ZHANG X D, XIONG S Z, et al. Structural properties of a- SiOx∶H films studied by an improved infrared-transmission analysis method[J]. Chinese Physics B, 2014, 23(9): 582-588.

    [19] [19] TSU D V, LUCOVSKY G, DAVIDSON B N. Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr∶H (0<r<2) alloy system[J]. Physical Review B, Condensed Matter, 1989, 40(3): 1795-1805.

    [20] [20] DAEY OUWENS J, SCHROPP R E. Hydrogen microstructure in hydrogenated amorphous silicon[J]. Physical Review B, Condensed Matter, 1996, 54(24): 17759-17762.

    [21] [21] YOU J C, LIU H, QU M H, et al. Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(17): 14608-14613.

    [22] [22] BEYER W, GHAZALA M S A. Absorption strengths of Si-H vibrational modes in hydrogenated silicon[J]. MRS Proceedings, 1998, 507: 601.

    [23] [23] ZHAO L, ZHANG W B, CHEN J W, et al. Plasma enhanced chemical vapor deposition of excellent a-Si∶H passivation layers for a-Si: H/c-Si heterojunction solar cells at high pressure and high power[J]. Frontiers in Energy, 2017, 11(1): 85-91.

    [24] [24] ZHAO L, DIAO H W, ZENG X B, et al. Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures[J]. Physica B: Condensed Matter, 2010, 405(1): 61-64.

    [25] [25] KANEKO T, ONISAWA K I, WAKAGI M, et al. Crystalline fraction of microcrystalline silicon films prepared by plasma-enhanced chemical vapor deposition using pulsed silane flow[J]. Japanese Journal of Applied Physics, 1993, 32(Part 1, No. 11A): 4907-4911.

    Tools

    Get Citation

    Copy Citation Text

    YOU Jiachuan, ZHAO Lei, DIAO Hongwei, WANG Wenjing. Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J]. Journal of Synthetic Crystals, 2021, 50(3): 509

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 24, 2021

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: Jiachuan YOU (yjccxs@163.com)

    DOI:

    CSTR:32186.14.

    Topics