Journal of Synthetic Crystals, Volume. 50, Issue 3, 509(2021)
Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition
[1] [1] MUKHOPADHYAY S, RAY S. Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties[J]. Applied Surface Science, 2011, 257(23): 9717-9723.
[2] [2] SAMANTA A, DAS D. Changes in optical and electrical phenomena correlated to structural configuration in nanocrystalline silicon network[J]. Journal of the Electrochemical Society, 2011, 158(11): H1138.
[3] [3] GAO D Z, LI Y, ZHANG B H, et al. Structural andphotoluminescence properties of nc-SiOx∶H/a-SiOx∶H multilayer films deposited at low temperature by VHF-PECVD technique[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(3): 806-812.
[4] [4] YANG J, JO H, CHOI S W, et al. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system[J]. Journal of Materials Science & Technology, 2019, 35(8): 1563-1569.
[5] [5] DING K N, AEBERHARD U, SMIRNOV V, et al. Widegap microcrystalline silicon oxide emitter for a- SiOx∶H/c-Si heterojunction solar cells[J]. Japanese Journal of Applied Physics, 2013, 52(12R): 122304.
[6] [6] TAN H R, BABAL P, ZEMAN M, et al. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 132: 597-605.
[7] [7] RICHTER A, SMIRNOV V, LAMBERTZ A, et al. Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 174: 196-201.
[8] [8] DAS C, LAMBERTZ A, HUEPKES J, et al. A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells[J]. Applied Physics Letters, 2008, 92(5): 053509.
[9] [9] LAMBERTZ A, SMIRNOV V, MERDZHANOVA T, et al. Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules[J]. Solar Energy Materials and Solar Cells, 2013, 119: 134-143.
[10] [10] LAMBERTZ A, GRUNDLER T, FINGER F. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells[J]. Journal of Applied Physics, 2011, 109(11): 113109.
[11] [11] BEYER W. Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2003, 78(1/2/3/4): 235-267.
[12] [12] VET B, ZEMAN M. Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si∶H solar cells[J]. Thin Solid Films, 2008, 516(20): 6873-6876.
[13] [13] JEON M, YOSHIBA S, KAMISAKO K. Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique[J]. Current Applied Physics, 2010, 10(2): S237-S240.
[14] [14] RUAN T, QU M H, WANG J Q, et al. Effect of deposition temperature of a-Si∶H layer on the performance of silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13330-13335.
[15] [15] DAS D, BARUA A K. Properties of a-SiO∶H films prepared by RF glow discharge[J]. Solar Energy Materials and Solar Cells, 2000, 60(2): 167-179.
[16] [16] LUNA-LPEZ J A, GARCA-SALGADO G, DAZ-BECERRIL T, et al. FTIR, AFM and PL properties of thin SiOx films deposited by HFCVD[J]. Materials Science and Engineering: B, 2010, 174(1/2/3): 88-92.
[17] [17] HE Y P, HUANG H B, ZHOU L, et al. Effect of substrate temperature and post-deposition annealing on intrinsic a-SiOx∶H film for n-Cz-Si wafer passivation[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4659-4664.
[18] [18] WANG S, ZHANG X D, XIONG S Z, et al. Structural properties of a- SiOx∶H films studied by an improved infrared-transmission analysis method[J]. Chinese Physics B, 2014, 23(9): 582-588.
[19] [19] TSU D V, LUCOVSKY G, DAVIDSON B N. Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr∶H (0<r<2) alloy system[J]. Physical Review B, Condensed Matter, 1989, 40(3): 1795-1805.
[20] [20] DAEY OUWENS J, SCHROPP R E. Hydrogen microstructure in hydrogenated amorphous silicon[J]. Physical Review B, Condensed Matter, 1996, 54(24): 17759-17762.
[21] [21] YOU J C, LIU H, QU M H, et al. Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(17): 14608-14613.
[22] [22] BEYER W, GHAZALA M S A. Absorption strengths of Si-H vibrational modes in hydrogenated silicon[J]. MRS Proceedings, 1998, 507: 601.
[23] [23] ZHAO L, ZHANG W B, CHEN J W, et al. Plasma enhanced chemical vapor deposition of excellent a-Si∶H passivation layers for a-Si: H/c-Si heterojunction solar cells at high pressure and high power[J]. Frontiers in Energy, 2017, 11(1): 85-91.
[24] [24] ZHAO L, DIAO H W, ZENG X B, et al. Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures[J]. Physica B: Condensed Matter, 2010, 405(1): 61-64.
[25] [25] KANEKO T, ONISAWA K I, WAKAGI M, et al. Crystalline fraction of microcrystalline silicon films prepared by plasma-enhanced chemical vapor deposition using pulsed silane flow[J]. Japanese Journal of Applied Physics, 1993, 32(Part 1, No. 11A): 4907-4911.
Get Citation
Copy Citation Text
YOU Jiachuan, ZHAO Lei, DIAO Hongwei, WANG Wenjing. Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J]. Journal of Synthetic Crystals, 2021, 50(3): 509
Category:
Received: Jan. 24, 2021
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: Jiachuan YOU (yjccxs@163.com)
CSTR:32186.14.