Acta Photonica Sinica, Volume. 52, Issue 6, 0604001(2023)
Effect of Zn Diffusion on Avalanche Breakdown Probability of InGaAs/InP Single Photon Avalanche Diodes
[1] J ZHANG, M A ITZLER, H ZBINDEN et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications, 4, 381-393(2015).
[2] M D EISAMAN, J FAN, A MIGDALL et al. Invited review article: single-photon sources and detectors. Review of Scientific Instruments, 82, 202-134(2011).
[3] C BRUSCHINI, H HOMULLE, I M ANTOLOVIC et al. Single-photon avalanche diode imagers in biophotonics:review and outlook. Light: Science & Applications, 8, 409-436(2019).
[4] C YU, J ZHANG, J W PAN et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. Optics Express, 25, 14611-14620(2017).
[5] B F AULL, A H LOOMIS, D J YOUNG et al. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes, 105-116(2004).
[6] F ACERBI, M ANTI, A TOSI et al. Design criteria for InGaAs/InP single-photon avalanche diode. IEEE Photonics Journal, 5, 6800209(2013).
[7] RUGGERI , ALESSANDRO , SANZARO et al. InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor. IEEE Journal of Quantum Electronics, 52, 1-7(2016).
[8] S WANG, H YE, F XIAO et al. Design, fabrication, and characteristic analysis of 64 × 64 InGaAs/InP single-photon avalanche diode array. Journal of Electronic Materials, 51, 2692-2697(2022).
[9] Weida HU, Qing LI, Jie WEN et al. Research status and progress of InGaAs/InP infrared avalanche photodetector. Infrared Technique, 40, 201-208(2018).
[10] Kaibao LIU, Xiaohong YANG, Tingting HE et al. InP based near-infrared single photon avalanche photodetector array. Laser & Optoelectronics Progress, 56, 220001(2019).
[11] K NISHIDA, K TAGUCHI, Y MATSUMOTO. InGaAsP heterostructure avalanche photodiodes with high avalanche gain. Applied Physics Letters, 35, 251-253(1979).
[12] Y LIU, S R FORREST, J HLADKY et al. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction. Journal of Lightwave Technology, 10, 182-193(1992).
[13] F SIGNORELLI, F TELESCA, E CONCA et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2021).
[14] A TOSI, N CALANDRI, M SANZARO et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE Journal of Selected Topics in Quantum Electronics, 20, 192-197(2014).
[15] S WANG, F MA, X LI et al. Analysis of breakdown probabilities in avalanche photodiodes using a history-dependent analytical model. Applied Physics Letters, 82, 1971-1973(2003).
[16] S L TAN, D S ONG, H K YOW. Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes. Journal of Applied Physics, 102, 1-7(2007).
[17] M A ITZLER, S COVA, A TOSI et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications. Journal of Modern Optics, 54, 283-304(2007).
[18] J C CAMPBELL, A G DENTAI, W S HOLDEN et al. High-performance avalanche photodiode with separate absorption 'grading and multiplication regions. Electronics Letters, 19, 818-820(1983).
[19] S R FORREST, O K KIM, R G SMITH. Optical response time of In0.53Ga0.47As/InP avalanche photodiodes. Applied Physics Letters, 41, 95-98(1982).
[20] T KNEZEVIC, T SULIGOJ. Examination of the InP/InGaAs single-photon avalanche diodes by establishing a new TCAD-based simulation environment, 57-60(2016).
[21] A G CHYNOWETH. Ionization rates for electrons and holes in silicon. Physical Review, 109, 1537-1540(1958).
[22] L W COOK, G E BULMAN, G E STILLMAN. Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements. Applied Physics Letters, 40, 589-591(1982).
[23] J D PETTICREW, S J DIMLER, C H TAN et al. Modeling temperature-dependent avalanche characteristics of InP. IEEE Journal of Lightwave Technology, 38, 961-965(2020).
[24] SADAO , ADACHI . Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y. Journal of Applied Physics, 66, 6030-6040(1989).
[25] Y TIAN, Q LI, W Q DING et al. High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication. IEEE Journal of Lightwave Technology, 40, 5245-5253(2022).
[26] J P DONNELLY, E K DUERR, K A MCINTOSH et al. Design considerations for 1.06-μm InGaAsP-InP geiger-mode avalanche photodiodes. IEEE Journal of Quantum Electronics, 42, 797-809(2006).
[27] Lili HOU, Qin HAN, Bin LI et al. Edge breakdown suppression of planar InGaAs/InP Geiger mode APDs by etching pits. Acta Photonica Sinica, 47, 0523001(2018).
[28] J AHMED, X YI, X JIN et al. Theoretical analysis of AlAs0.56Sb0.44 single photon avalanche diodes with high breakdown probability. IEEE Journal of Quantum Electronics, 57, 1-6(2021).
[29] MCINTYRE , J ROBERT. On the avalanche initiation probability of avalanche diodes above the breakdown voltage. IEEE Transactions on Electron Devices, 20, 637-641(1973).
Get Citation
Copy Citation Text
Kefei GUO, Fei YIN, Liyu LIU, Kai QIAO, Ming LI, Tao WANG, Mengyan FANG, Chao JI, Youshan QU, Jinshou TIAN, Xing WANG. Effect of Zn Diffusion on Avalanche Breakdown Probability of InGaAs/InP Single Photon Avalanche Diodes[J]. Acta Photonica Sinica, 2023, 52(6): 0604001
Category:
Received: Dec. 28, 2022
Accepted: Feb. 20, 2023
Published Online: Jul. 27, 2023
The Author Email: WANG Xing (wangxing@opt.ac.cn)