Infrared and Laser Engineering, Volume. 50, Issue 8, 20210436(2021)
Research development on Tm3+/ Ho3+ ions doped mid-infrared ultrafast lasers (Invited)
[1] De Pelsmaeker J, Graulus G, Van Vlierberghe S, et al. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization[J]. Journal of Materials Processing Technology, 255, 808-815(2018).
[2] Mizutani K, Ishii S, Aoki M, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser[J]. Optics Letters, 43, 202-205(2018).
[3] Antonov V A, Han K C, Akhmedzhanov T R, et al. Attosecond pulse amplification in a plasma-based X-Ray laser dressed by an infrared laser field[J]. Physical Review Letters, 123, 243903(2019).
[4] Yoshida T, Taguchi M, Takaaki I, et al. Thulium laser ablation facilitates retrograde intra-renal surgery for upper urinary tract urothelial carcinoma[J]. International Journal of Urology, 25, 379-383(2018).
[5] Antipov O L, Eranov I D, Kositsyn R I. 10-W mid-IR optical parametric oscillators based on ZnGeP2 elements pumped by a fibre-laser-pumped Ho: YAG Laser. Experimental and numerical study[J]. Quantum Electronics (Woodbury, N. Y.), 47, 601-606(2017).
[6] Zhang Z, Guo X, Wang J, et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+: CaF2 single crystal[J]. Optics Letters, 43, 4300-4303(2018).
[7] Huang H, Hu H, Lin Z, et al. Anisotropic thermal analyses of a high efficiency Tm: YAP slab laser and its intra-cavity pumping for Ho lasers[J]. Optics Express, 28, 20930(2020).
[8] Pinto J F, Esterowitz L. Continuous-wave mode-locked 2-μm Tm: YAG laser[J]. Optics Letters, 17, 731(1992).
[9] Galzerano G, Marano M, Longhi S, et al. Sub-100-ps amplitude-modulation mode-locked Tm-Ho: BaY2F8 laser at 2.06 μm[J]. Optics Letters, 28, 2085-2087(2003).
[10] Hubner P, Kieleck C, Jackson S D, et al. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser[J]. Optics Letters, 36, 2483-2485(2011).
[11] Yao B Q, Cui Z, Wang J, et al. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser[J]. Laser Physics Letters, 12, 25002(2014).
[12] Cui Z, Duan X M, Yao B Q, et al. Actively mode-locked Ho: LuAG laser at 2.1 μm[J]. Applied Physics B, 121, 421-424(2015).
[13] Duan X, Zhang P, Cui Z, et al. Actively mode-locked Ho: LuVO4 laser at 2073.8 nm[J]. Optical Engineering, 55, 126104(2016).
[14] Duan X, Yuan J, Cui Z, et al. Resonantly pumped actively mode-locked Ho: YAG ceramic laser at 2122.1 nm[J]. Applied Optics, 55, 1953-1956(2016).
[15] Ma W, Wang T, Wang F, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 45, 170662(2018).
[16] Muzik J, Jr M J, Vyhlidal D, et al. 2.6 W diode-pumped actively mode-locked Tm: YLF laser[J]. Laser Physics Letters, 12, 035802(2015).
[17] Eckerle M, Kieleck C, Świderski J, et al. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Optics Letters, 37, 512-514(2012).
[18] Wang X, Zhou P, Wang X, et al. 2-μm Tm-Doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating[J]. Photonics Journal, IEEE, 5, 1502206(2013).
[19] Yin K, Zhang B, Yang W, et al. Flexible picosecond thulium-doped fiber laser using the active mode-locking technique[J]. Optics Letters, 39, 4259-4262(2014).
[20] Kneis C, Donelan B, Berrou A, et al. Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power[J]. Optics Letters, 40, 1464-1467(2015).
[21] Wu X, Wu Z, Huang T, et al. All-optical actively mode-locked fiber laser at 2-μm based on inter-band modulation[J]. IEEE Photonics Journal, 9, 2756643(2017).
[22] [22] Dergachev A. Highenergy, kHzrate, picosecond, 2µm laser pump source f IR nonlinear optical devices[C]Proceedings of SPIE The International Society f Optical Engineering, 2013, 8599: 2001386.
[23] Yao B Q, Li H, Li X L, et al. An actively mode-locked Ho: YAG solid-laser pumped by a Tm-doped fiber laser[J]. Chinese Physics Letters, 33, 44-47(2016).
[24] Xiao Y H, Mu Y L, Yang L L, et al. A ps level actively mode-locked Ho: Sc2SiO5 laser at 2112.1 nm resonantly-pumped by Tm fiber laser[J]. Laser Physics, 28, 015801(2018).
[25] [25] Schepler K L, Smith B D, Heine F, et al. Passive Qswitching mode locking of 2um lasers[C]SPIE, 1993: 186189.
[26] Sharp R C, Spock D E, Pan N, et al. 190-fs passively mode-locked thulium fiber laser with a low threshold[J]. Optics Letters, 21, 881-883(1996).
[27] Paajaste J, Suomalainen S, Koskinen R, et al. GaSb-based heterostructures for high power and pulsed laser operation[J]. Lithuanian Journal of Physics, 50, 41-46(2010).
[28] Lagatsky A A, Fusari F, Calvez S, et al. Passive mode locking of a Tm, Ho: KY(WO4)2 laser around 2 μm[J]. Optics Letters, 34, 2587-2589(2009).
[29] Lagatsky A A, Han X, Serrano M D, et al. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm[J]. Optics Letters, 35, 3027-3029(2010).
[30] Paajaste J, Suomalainen S, Koskinen R, et al. GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers[J]. Physica Status Solidi, 9, 294-297(2012).
[31] Yang K, Heinecke D, Paajaste J, et al. Mode-locking of 2 μm Tm, Ho: YAG laser with GaInAs and GaSb-based SESAMs[J]. Optics Express, 21, 4311-4318(2013).
[32] Zhao Y, Wang L, Chen W, et al. SESAM mode-locked Tm: LuYO3 ceramic laser generating 54-fs pulses at 2048 nm[J]. Applied Optics, 59, 10493-10497(2020).
[33] Kim A, Hunsche S, Dekorsy T, et al. Time-resolved study of intervalence band thermalization in a GaAs quantum well[J]. Applied Physics Letters, 68, 2956-2958(1996).
[34] [34] Gegiev N, Semtsiv M, Deksy T, et al. Intersubb transitions in strain compensated InGaAsAlAs quantum well structures grown on InP[C]Institute of Physics Conference Series, 2003.
[35] Tribuzy V B, Ohser S, Winnerl S, et al. Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum well structures[J]. Applied Physics Letters, 89, 495(2006).
[36] Tribuzy V B, Ohser S, Priegnitz M, et al. Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells[J]. Physica Status Solidic, 5, 229-231(2010).
[37] Yang K, Bromberger H, Ruf H, et al. Passively mode-locked Tm, Ho: YAG laser at 2 microm based on saturable absorption of intersubband transitions in quantum wells[J]. Optics Express, 18, 6537-6544(2010).
[38] Coluccelli N, Lagatsky A, Di Lieto A, et al. Passive mode locking of an in-band-pumped Ho: YLiF4 laser at 2.06 μm[J]. Optics Letters, 36, 3209-3211(2011).
[39] Fusari F, Lagatsky A A, Jose G, et al. Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers[J]. Optics Express, 18, 22090-22098(2010).
[40] Lagatsky A A, Calvez S, Gupta J A, et al. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm[J]. Optics Express, 19, 9995-10000(2011).
[41] Lagatsky A A, Koopmann P, Fuhrberg P, et al. Passively mode locked femtosecond Tm: Sc2O3 laser at 2.1 μm[J]. Opt Lett, 37, 437-439(2012).
[42] Lagatsky A A, Antipov O L, Sibbett W. Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070 nm[J]. Optics Letters, 20, 19349-19354(2012).
[43] Yang K J, Bromberger H, Heinecke D, et al. Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser[J]. Optics Express, 20, 18630-18635(2012).
[44] [44] Gluth A, Mateos X, Paajaste J, et al. Passively ModeLocked Tm: YAG Ceramic Laser at 2 µm[C]Advanced Solid State Lasers, 2013.
[45] Feng T, Yang K, Zhao J, et al. 1.21 W passively mode-locked Tm: LuAG laser[J]. Optics Express, 23, 11819(2015).
[46] Kong L C, Qin Z P, Xie G Q, et al. Dual-wavelength synchronous operation of a mode-locked 2-µm Tm: CaYAlO4 laser[J]. Optics Letters, 40, 356-358(2015).
[47] Gluth A, Wang Y, Petrov V, et al. GaSb-based SESAM mode-locked Tm: YAG ceramic laser at 2 µm[J]. Optics Express, 23, 1361(2015).
[48] Wang Y, Lan R, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers[J]. Optics Express, 25, 7084(2017).
[49] Wang Y, Jing W, Loiko P, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 µm[J]. Optics Express, 26, 10299(2018).
[50] Tyazhev A, Soulard R, Godin T, et al. Passively mode-locked diode-pumped Tm3+: YLF laser emitting at 1.91 µm using a GaAs-based SESAM[J]. Laser Physics Letters, 15, 045807(2018).
[51] Shen Y, Han X, Li L, et al. Continuous-wave mode-locked Tm: YAG laser with GaAs-based SESAM[J]. Infrared Physics & Technology, 111, 103539(2020).
[52] Liu J, Zhang C, Zhang Z, et al. 1886-nm mode-locked and wavelength tunable Tm-doped CaF2 lasers[J]. Optics Letters, 44, 134-137(2019).
[53] Zhou W, Shen D Y, Wang Y S, et al. Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy[J]. Laser Physics Letters, 9, 587-590(2012).
[54] Chernysheva M A, Krylov A A, Kryukov P G, et al. Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser[J]. IEEE Photonics Technology Letters, 24, 1254-1256(2012).
[55] Li H, Liu J, Cheng Z, et al. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers[J]. Optics Express, 23, 6292(2015).
[56] Kuan P, Li K, Zhang L, et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 28, 1525-1528(2016).
[57] Cheng H, Lin W, Luo Z, et al. Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).
[58] Wang Y, Lan R, Mateos X, et al. Broadly tunable mode-locked Ho: YAG ceramic laser around 2.1 µm[J]. Optics Express, 24, 18003(2016).
[59] [59] Sokin E, Bugar I, Sokina I T, et al. Compact diodepumped dispersionmanaged SESAMmodelocked Ho: fiber laser[C]infrared Coherent Source, 2016.
[60] Lagatsky A A, Fusari F, Calvez S, et al. Femtosecond pulse operation of a Tm, Ho-codoped crystalline laser near 2 μm[J]. Optics Letters, 35, 172-174(2010).
[61] Yang K J, Heinecke D C, Kolbl C, et al. Mode-locked Tm, Ho: YAP laser around 2.1 μm[J]. Optics Express, 21, 1574-1580(2013).
[62] Aleksandrov V, Gluth A, Petrov V, et al. Mode-locked Tm, Ho: KLu(WO4) 2 laser at 2060 nm using InGaSb-based SESAMs[J]. Optics Express, 23, 4614(2015).
[63] Zhao Y, Wang Y, Zhang X, et al. 87 fs mode-locked Tm, Ho: CaYAlO4 laser at 2043 nm[J]. Optics Letters, 43, 915(2018).
[64] [64] Wang Y, Zhao Y, Pan Z, et al. 73fs SESAM modelocked Tm, Ho: CNGG laser at 2061 nm[C]Solid State Lasers XXIX: Technology Devices, 2020.
[65] Ling W, Xia T, Sun R, et al. Low threshold, high efficiency passively mode-locked picosecond Tm, Ho: LiLuF4 laser[J]. Frontiers in Physics, 7(2020).
[66] [66] Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using modelocked TmHo fiber system[C]IEEE, 2007: 1.
[67] Wang Q, Geng J, Jiang Z, et al. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm[J]. IEEE Photonics Technology Letters, 23, 682-684(2011).
[68] Kivisto S, Okhotnikov O G. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photonics Technology Letters, 23, 477-479(2011).
[69] Solodyankin M A, Obraztsova E D, Lobach A S, et al. Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber[J]. Optics Letters, 33, 1336-1338(2008).
[70] Liu J, Wang Y G, Qu Z S, et al. Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser[J]. Laser Physics Letters, 9, 15-19(2011).
[71] [71] Liu J, Wu S, Xu J, et al. Modelocked 2 μm thuliumdoped fiber laser with graphene oxide saturable absber[C]IEEE, 2012: 12.
[72] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 37, 2085-2087(2012).
[73] Ma J, Xie G, Zhang J, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55(2014).
[74] Jeong H, Choi S Y, Kim M H, et al. All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber[J]. Optics Express, 24, 14152(2016).
[75] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 22, 7865(2014).
[76] [76] Tarka J, Boguslawski J, Zybala R, et al. 2 µm ultrafast fiber laser modelocked by mechanically exfoliated Sb2Te3[C]SPIE, 2016: 972820.
[77] Tian Z, Wu K, Kong L, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 12, 65104(2015).
[78] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 40, 3885-3888(2015).
[79] [79] Scht A, Parisi D, Veronesi S, et al. Passive modelocking of a Tm: YLF laser[C]Lasers & Electrooptics IEEE, 2011.
[80] Schmidt A, Koopmann P, Huber G, et al. 175 fs Tm: Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes[J]. Optics Express, 20, 5313-5318(2012).
[81] Schmidt A, Sun Y C, Yeom D I, et al. Femtosecond pulses near 2 μm from a Tm: KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber[J]. Applied Physics Express, 5, 2704(2012).
[82] Liu J, Wang Y G, Qu Z S, et al. Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser[J]. Laser Physics Letters, 9, 15-19(2012).
[83] Lagatsky A A, Sun Z, Kulmala T S, et al. 2 μm solid-state laser mode-locked by single-layer graphene[J]. Applied Physics Letters, 102, 959(2013).
[84] Wang Y, Chen W, Mero M, et al. Sub-100 fs Tm: MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber[J]. Optics Letters, 42, 3076-3079(2017).
[85] Pan Z B, Wang Y C, Zhao Y G, et al. Generation of 84-fs pulses from a mode-locked Tm: CNNGG disordered garnet crystal laser[J]. Photonics Research, 6, 800-804(2018).
[86] Wang Y, Zhao Y, Pan Z, et al. 78 fs SWCNT-SA mode-locked Tm: CLNGG disordered garnet crystal laser at 2017 nm[J]. Optics Letters, 43, 4268-4271(2018).
[87] Zhao Y, Li W, Wang Y, et al. SWCNT-SA mode-locked Tm: LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 µm[J]. Optics Letters, 45, 380035(2019).
[88] Li L, Zhou L, Li T, et al. Passive mode-locking operation of a diode-pumped Tm: YAG laser with a MoS2 saturable absorber[J]. Optics & Laser Technology, 124, 105986(2020).
[89] Kieu K, Wise F W. Soliton Thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photonics Technology Letters, 21, 128-130(2009).
[90] Zhang M, Kelleher E J R, Torrisi F, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 20, 25077-25084(2012).
[91] [91] Jiang J, Mohr C, Bethge J, et al. 500 MHz, 58fs highly coherent Tm fiber soliton laser[C]IEEE, 2012: 12.
[92] Wang Q, Chen T, Li M, et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes[J]. Applied Physics Letters, 103, 11103(2013).
[93] Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 21, 12797(2013).
[94] Wang Q, Chen T, Zhang B, et al. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers[J]. Applied Physics Letters, 102, 131117(2013).
[95] Wang J, Liang X, Hu G, et al. 152 fs nanotube-mode-locked thulium-doped all-fiber laser[J]. Scientific Reports, 6, 28885(2016).
[96] Sotor J, Bogusławski J, Martynkien T, et al. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber[J]. Optics Letters, 42, 1592-1595(2017).
[97] Wang J, Jiang Z, Chen H, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 42, 5010-5013(2017).
[98] Wang J, Jiang Z, Chen H, et al. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber[J]. Photonics Research (Washington, DC), 6, 535(2018).
[99] [99] Watanabe K, Zhou Y, Saitoh A, et al. Dispersion managed, high power TMdoped ultrasht pulse fiber laser at 1.9 μm using single wall carbon nanotube polyie film[C]IEEE, 2019.
[100] Dai R, Meng Y, Li Y, et al. Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser[J]. Optics Express, 27, 3518(2019).
[101] Pawliszewska M, Ge Y, Li Z, et al. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber[J]. Optics Express, 25, 16916(2017).
[102] Pawliszewska M, Martynkien T, Przewłoka A, et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Optics Letters, 43, 38-41(2018).
[103] Pawliszewska M, Dużyńska A, Zdrojek M, et al. Metallic carbon nanotube-based saturable absorbers for holmium-doped fiber lasers[J]. Optics Express, 27, 11361(2019).
[104] Aleksandrov V, Gluth A, Petrov V, et al. Tm, Ho: KLu(WO4)2 laser mode- locked near 2 μm by single-walled carbon nanotubes[J]. Optics Express, 22, 26872(2014).
[105] Pan Z, Wang Y, Zhao Y, et al. Sub-80fs mode-locked Tm, Ho-codoped disordered garnet crystal oscillator operating at 2081nm[J]. Optics Letters, 43, 5154-5157(2018).
[106] Zhao Y, Wang Y, Chen W, et al. 67-fs pulse generation from a mode-locked Tm, Ho: CLNGG laser at 2083 nm[J]. Optics Express, 27, 1922(2019).
[107] Yin K, Zhang B, Li L, et al. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm[J]. Photonics Research, 3, 72-75(2015).
[108] Jung M, Lee J, Park J, et al. Mode-locked, 194-μm, all-fiberized laser using WS2-based evanescent field interaction[J]. Optics Express, 23, 19996(2015).
[109] Ahmad H, Ariffin N A M, Aidit S N, et al. 1.9 μm mode-locked fiber laser based on evanescent field interaction with metallic vanadium diselenide (VSe2)[J]. Optik, 230, 166280(2021).
[110] [110] Zhang J, Mak K F, Gröbmeyer S, et al. 270 fs, 30Wlevel Kerrlens mode locked Ho: YAG thindisk oscillat at 2 μm[C] Nonlinear Optics, 2017.
[111] Canbaz F, Yorulmaz I, Sennaroglu A. Kerr-lens mode-locked 2.3 μm Tm3+: YLF laser as a source of femtosecond pulses in the mid-infrared[J]. Optics Letters, 42, 3964-3967(2017).
[112] Su Z, Zhang X, Huang J, et al. Self-mode-locking operation of a diode-end-pumped Tm: YAP laser with watt-level output power[J]. Laser Physics, 28, 035804(2018).
[113] Suzuki A, Krnkel C, Tokurakawa M. High quality-factor Kerr-lens mode- locked Tm: Sc2O3 single crystal laser with anomalous spectral broadening[J]. Applied Physics Express, 13, 052007(2020).
[114] Anna Suzuki, Christian Kränkel, Masaki Tokurakawa. Sub-6 optical-cycle Kerr-lens mode-locked Tm: Lu2O3 and Tm: Sc2O3 combined gain media laser at 2.1 μm[J]. Optics Express, 29, 19465-19471(2021).
[115] Nelson L E, Ippen E P, Haus H A. Broadly tunable sub‐500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Applied Physics Letters, 67, 19-21(1995).
[116] Li P, Ruehl A, Bransley C, et al. Low noise, tunable Ho: fiber soliton oscillator for Ho: YLF amplifier seeding[J]. Physics, 13, 065104(2016).
[117] Li H, Wang Z, Li C, et al. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber[J]. Optics Express, 25, 26546(2017).
[118] Ahmad H, Ahmed M H M, Samion M Z. Generation of mode-locked noise-like pulses in double-clad Tm-doped fibre laser with nonlinear optical loop mirror[J]. Journal of Modern Optics, 67, 146-152(2020).
[119] Haxsen F, Ruehl A, Engelbrecht M, et al. Stretched-pulse operation of a thulium-doped fiber laser[J]. Optics Express, 16, 20471-20476(2008).
[120] Engelbrecht M, Haxsen F, Ruehl A, et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Optics Letters, 33, 690-692(2008).
[121] Wang Q, Chen T, Zhang B, et al. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes[J]. Optics Letters, 36, 3750-3752(2011).
[122] Haxsen F, Wandt D, Morgner U, et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Optics Letters, 37, 1014-1016(2012).
[123] Wienke A, Haxsen F, Wandt D, et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Optics Letters, 37, 2466-2468(2012).
[124] He X, Luo A, Yang Q, et al. 60 nm Bandwidth, 17 nJ Noiselike pulse generation from a Thulium-doped fiber ring laser[J]. Applied Physics Express, 6, 112702(2013).
[125] Gebhardt M, Gaida C, Stutzki F, et al. Sub-200 fs, nJ-level stretched-pulse thulium-doped fiber oscillator at 23 MHz repetition rate[J]. Advanced Solid State Lasers, AM5A.43(2014).
[126] Li J, Yan Z, Sun Z, et al. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating[J]. Optics Express, 22, 31020(2014).
[127] Nomura Y, Fuji T. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator[J]. Optics Express, 22, 12461(2014).
[128] Yan Z, Li X, Tang Y, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution[J]. Optics Express, 23, 4369(2015).
[129] Tang Y, Chong A, Wise F W. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser[J]. Optics Letters, 40, 2361-2364(2015).
[130] Liu S, Yan F, Li Y, et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion[J]. Photonics Research, 4, 318-321(2016).
[131] Gao C, Wang Z, Luo H, et al. High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation[J]. Journal of Lightwave Technology, 35, 2988-2993(2017).
[132] [132] Vopaev V S, Donodin A I, Vos A I, et al. Highpower passively modelocked thuliumdoped allfiber ring laser with nonlinearity dispersion management[C]2018 International Conference Laser Optics (ICLO), 2018.
[133] Michalska M, Swiderski J. Noise-like pulse generation using polarization maintaining mode-locked Thulium-doped fiber laser with nonlinear amplifying loop mirror[J]. IEEE Photonics Journal, 11, 1-10(2019).
[134] [134] Liu G, Yin K, Yang L, et al. Noiselike pulse generation from a Hodoped fiber laser based on nonlinear polarization rotation[C]SPIE, 2018: 1061908.
[135] [135] Rudy C W, Digon M, Byer R L, et al. Thuliumdoped Germanosilicate Modelocked Fiber Lasers[C]Fiber Lasers Applications, 2012.
[136] Rudy C W, Urbanek K E, Digonnet M J F, et al. Amplified 2-μm Thulium- doped all-fiber mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 31, 1809-1812(2013).
[137] Li J, Zhang Z, Sun Z, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes[J]. Optics Express, 22, 7875(2014).
[138] [138] Liu S, Yan F, Zhang L, et al. Noiselike femtosecond pulse in passively modelocked Tmdoped NALMbased oscillat with small anomalous dispersion[J]. Journal of Optics, 2015, 18(1): 15508.
[139] [139] Liu S, Yan F, Feng T, et al. Singlepolarization noiselike pulse generation from a hybrid modelocked thuliumdoped fiber laser[J]. Journal of Optics (2010), 2017, 19(4): 45505.
[140] Wang M, Zhao J, Chen Y, et al. 10 µJ noise-like pulse generated from all fiberized Tm-doped fiber oscillator and amplifier[J]. Optics Express, 29, 10172(2021).
[141] Zhao J, Zhou J, Jiang Y, et al. Nonlinear absorbing-loop mirror in a Holmium-doped fiber laser[J]. Journal of Lightwave Technology, 38, 6069-6075(2020).
[142] Mahnke C, Ma Y, Salman S, et al. A passively mode-locked Holmium fiber oscillator based on a Nonlinear Amplifying Loop Mirror operating at 2050 nm[J]. The European Physical Journal Conferences, 243, 04002(2020).
[143] Malevich P, Andriukaitis G, Flöry T, et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers[J]. Optics Letters, 38, 2746-2749(2013).
[144] Kroetz P, Ruehl A, Chatterjee G, et al. Overcoming bifurcation instability in high-repetition-rate Ho: YLF regenerative amplifiers[J]. Optics Letters, 40, 5427-5430(2015).
[145] Grafenstein L V, Bock M, Ueberschaer D, et al. Picosecond 34 mJ pulses at kHz repetition rates from a Ho: YLF amplifier at 2 µm wavelength[J]. Optics Express, 23, 33142(2015).
[146] Hinkelmann M, Wandt D, Morgner U, et al. High repetition rate, µJ-level, CPA-free ultrashort pulse multipass amplifier based on Ho: YLF[J]. Optics Express, 26, 18125(2018).
[147] Grafenstein L V, Bock M, Ueberschaer D, et al. 2.05 μm chirped pulse amplification system at a 1 kHz repetition rate-2.4 ps pulses with 17 GW peak power[J]. Optics Letters, 45, 3836-3839(2020).
[148] Wienke A, Wandt D, Morgner U, et al. 700 MW peak power of a 380 fs regenerative amplifier with Tm: YAP[J]. Optics Express, 23, 16884(2015).
[149] Rezvani S A, Suzuki M, Malevich P, et al. Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm: YAP regenerative amplifier[J]. Optics Express, 26, 29460(2018).
[150] [150] Dergachev A. Highenergy, kHzrate, picosecond, 2μm laser pump source f IR nonlinear optical devices[C]Proceedings of SPIE, 2013, 8599.
[151] Grafenstein L V, Bock M, Griebner U, et al. High-energy multi-kilohertz Ho-doped regenerative amplifiers around 2 µm[J]. Optics Express, 23, 14744(2015).
[152] Hemmer M, Sanchez D, Jelinek M, et al. 2-μm wavelength, high-energy Ho: YLF chirped-pulse amplifier for mid-infrared OPCPA[J]. Optics Letters, 40, 451-454(2015).
[153] Grafenstein L V, Bock M, Steinmeyer G, et al. Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate[J]. Laser & Photonics Reviews, 10, 123-130(2016).
[154] [154] Hinkelmann M, Wt D, Neumann J, et al. Ultrasht pulse CPAfree Ho: YLF linear amplifier[C]Solid State Lasers XXVII: Technology Devices, 2018.
[155] Murari K, Zhou F, Yin Y, et al. Ho: YLF amplifier with Ti: Sapphire frontend for pumping mid-infrared optical parametric amplifier[J]. Applied Physics Letters, 117, 141102(2020).
[156] Astrauskas I, Považay B, Baltuška A, et al. Influence of 2.09-μm pulse duration on through-silicon laser ablation of thin metal coatings[J]. Optics & Laser Technology, 133, 106535(2021).
Get Citation
Copy Citation Text
Jiajia Mao, Ping Hu, Xue Zhou, Huahang Wang, Hongkun Nie, Bingzheng Yan, Ruihua Wang, Baitao Zhang, Tao Li, Kejian Yang, Jingliang He. Research development on Tm3+/ Ho3+ ions doped mid-infrared ultrafast lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210436
Category:
Received: Jun. 28, 2021
Accepted: --
Published Online: Nov. 2, 2021
The Author Email: Kejian Yang (k.j.yang@sdu.edu.cn), Jingliang He (jlhe@sdu.edu.cn)