Remote Sensing Technology and Application, Volume. 39, Issue 1, 120(2024)
Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data
[1] ZHOU Guanhua, TANG Junwu, TIAN Guoliang et al. Uncertainty analysis of inland water quality remote sensing: A renew. Advances in Earth Science, 24, 150-158(2009).
[2] LI S, SONG K, WANG S et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Science of The Total Environment, 146271(2021).
[3] WANG Shanshan, LI Yunmei, WANG Yongbo et al. Suitability of the retrieval models for estimating chlorophyll concentration in Lake Taihu. Journal of Lake Sciece, 27, 150-162(2015).
[4] XIANG W, GE L A et al. Remote estimates of total suspended matter in China's main estuaries using Landsat images and a weight random forest model. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 94-110(2022).
[5] ZHANG Yibo, ZHANG Yunlin, ZHA Yong et al. Remote sensing estimation of total suspended matter concentration in Xin'anjiang reservoir using Landsat 8 data. Environmental Science, 36, 56-63(2015).
[6] DU A, RONG H et al. Optical characterization of black water blooms in eutrophic waters. Science of the Total Environment(2014).
[7] YANG H, KONG J, HU H et al. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sensing, 14, 1770(2022).
[8] CHEBUD Y, NAJA G M, RIVERO R G et al. Water quality monitoring using remote sensing and an artificial neural network. Water, 223, 4875-4887(2012).
[9] WANG X, LI F U, CHANSHENG H E. Applying support vector regression to water quality modelling by remote sensing data. International Journal of Remote Sensing, 32, 8615-8627(2011).
[10] HUANGFU K, LI J, ZHANG X et al. Remote Estimation of Water Quality Parameters of Medium- and Small-Sized Inland Rivers Using Sentinel-2 Imagery. Water, 12, 3124(2020).
[12] PETERSON K T, SAGAN V, SLOAN J J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience And Remote Sensing, 57, 510-525(2020).
[13] KIM Y W, KIM T, SHIN J et al. Validity evaluation of a machine-learning model for chlorophyll a retrieval using Sentinel-2 from inland and coastal waters. Ecological Indicators, 137, 108737(2022).
[14] GORELICK N, HANCHER M, DIXON M et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202(2017).
[15] DRUSCH M, DEL BELLO U, CARLIER S et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36(2012).
[16] FANG Li. National surface water quality monitoring data, 04(2020).
[17] MULLER-WILM U, LOUIS J, RICHTER R et al. Sentinel-2 level 2A prototype processor: Architecture, algorithms and first results, 9-13(2013).
[18] WAN Z, HOOK S. G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006(2015).
[19] WAN Z, HOOK S. G. MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006(2015).
[20] DIDAN K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006(2015).
[21] DIDAN K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006(2015).
[22] LYAPUSTIN A, WANG Y. MCD19A2 MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1km SIN Grid V006(2018).
[23] CHENG X. Fine-resolution mapping of pan-arctic lake ice-off phenology based on dense sentinel-2 time series data. Remote Sensing, 13, 2742(2021).
[24] ROUSSEEUW P J, DRIESSEN K V. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212(1999).
[25] VAPNIK V N. Adaptive and learning systems for signal processing communications, and control. Statistical Learning Theory(1998).
[27] HECHTNIELSEN R. Counterpropagation networks. Applied Optics, 26, 4979-4983(1987).
[28] WANG Fengxia, XIA Zhuoyi, GUO Yuhui et al. Water quality inversion and eutrophication assessment of The South China Sea based on GEE. China Environmental Science, 42, 826-833(2022).
[29] VAPNIK V N. EEstimation of Dependence Based on Empirical Data. Springer Science & Business Media(2006).
[30] KUTER S. Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data:Random forests versus support vector regression. Remote Sensing of Environment, 255, 112294(2021).
[31] BREIMAN L. Bagging predictors. Machine learning, 24, 123-140(1996).
[32] HORNIK K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251-257(1991).
[33] HORNIK K. Some new results on neural network approximation. Neural Networks, 6, 1069-1072(1993).
[34] ELLACOTT S. W. Aspects of the numerical analysis of neural networks. Acta Numerica, 3, 145-202(1994).
[35] HORNIK K, STINCHCOMBE M B, WHITE H. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989).
[36] KOMER B, BERGSTRA J, ELIASMITH C. Hyperopt Sk-learn: Automatic Hyperparameter Configuration for Scikit Learn. Icml Automl Workshop(2014).
[37] WANG X L, LI Zhanbin. Identifying the Parameters of the Kernel Function in Support Vector Machines Based on the Grid[1]Search Method. Periodical of Ocean University of China, 35, 4(2005).
[38] NAGELKERKE N. A note on a general definition of the coefficient of determination. Biometrika, 78, 691-702(1991).
[39] COYLE E J, LIN J H. Stack filters and the mean absolute error criterion. IEEE Trans Acoustics Speech Signal Processing, 36, 1244-1254(1988).
[40] FABER N K M. Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 49, 79-89(1999).
[41] MONTGOMERY J M. Water treatment: principles and design(1985).
[42] GUO Q, ZHANG D, CAO L et al. A Remote Sensing Method to Inverse Chemical Oxygen Demand in Qinghai Lake(2021).
[43] XIE Yuru, SHEN Yang, XU Yun. Discussion on the Treatment of Eutrophic Water by Algae Membrane. Technology and Enterprise, 268(2014).
[44] KIM Y H, KIM H-C et al. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Environment international, 134, 105301(2020).
[45] CâNDIDO A K A A, HAUPENTHAL M R, SILVA N M DA et al. Water quality and chlorophyll measurement through vegetation indices generated from orbital and suborbital images. Water, 227, 1-11(2016).
[46] DE ASSIS ESTEVES F. Fundamentos de Limnologia. Interciência(1998).
[47] HUANG Jun, CHEN Jianzhong. Recent advances on the treatment technologies of ammonia-nitrogen wastewater. Journal of Environmental Engineering, 3, 65-68(2002).
[48] RODRíGUEZ-LóPEZ L, DURAN-LLACER I, GONZALEZ-RODRIGUEZ L et al. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecological Informatics, 60, 101183(2020).
[49] KIM E J, NAM S H, KOO J W et al. Hybrid approach of Unmanned Aerial Vehicle and Unmanned Surface Vehicle for assessment of chlorophyll-a imagery using spectral indices in Stream, South Korea. Water, 13, 1930(2021).
[51] WARREN M A, SIMIS S, MARTINEZ-VICENTE V et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment, 225, 267-289(2019).
[52] LI H, ZHANG G, ZHU Y et al. Inversion and driving force analysis of nutrient concentrations in the ecosystem of the Shenzhen-Hong Kong Bay Area. Remote Sensing, 14, 3694(2022).
Get Citation
Copy Citation Text
Zixuan DUI, Qing WANG, Min WANG, Jing ZHANG, Qianrong GU. Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data[J]. Remote Sensing Technology and Application, 2024, 39(1): 120
Category: Research Articles
Received: Oct. 13, 2022
Accepted: --
Published Online: Jul. 22, 2024
The Author Email: Zixuan DUI (duizx@sari.ac.cn)