Remote Sensing Technology and Application, Volume. 39, Issue 1, 120(2024)

Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data

Zixuan DUI1,2、*, Qing WANG3, Min WANG3, Jing ZHANG4, and Qianrong GU1
Author Affiliations
  • 1Shanghai Carbon Data Research Center,Key Laboratory of Low - Carbon Conversion Science & Engineering,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Shanghai Academy of Environmental Sciences,Shanghai 200233,China
  • 4Jiangsu Provincial Judicial Police Officer Higher Vocational College,Nanjing 212008,China
  • show less
    References(49)

    [1] Guanhua ZHOU, Junwu TANG, Guoliang TIAN et al. Uncertainty analysis of inland water quality remote sensing: A renew. Advances in Earth Science, 24, 150-158(2009).

    [2] S LI, K SONG, S WANG et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Science of The Total Environment, 146271(2021).

    [3] Shanshan WANG, Yunmei LI, Yongbo WANG et al. Suitability of the retrieval models for estimating chlorophyll concentration in Lake Taihu. Journal of Lake Sciece, 27, 150-162(2015).

    [4] W XIANG, L A GE et al. Remote estimates of total suspended matter in China's main estuaries using Landsat images and a weight random forest model. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 94-110(2022).

    [5] Yibo ZHANG, Yunlin ZHANG, Yong ZHA et al. Remote sensing estimation of total suspended matter concentration in Xin'anjiang reservoir using Landsat 8 data. Environmental Science, 36, 56-63(2015).

    [6] A DU, H RONG et al. Optical characterization of black water blooms in eutrophic waters. Science of the Total Environment(2014).

    [7] H YANG, J KONG, H HU et al. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sensing, 14, 1770(2022).

    [8] Y CHEBUD, G M NAJA, R G RIVERO et al. Water quality monitoring using remote sensing and an artificial neural network. Water, 223, 4875-4887(2012).

    [9] X WANG, F U LI, H E CHANSHENG. Applying support vector regression to water quality modelling by remote sensing data. International Journal of Remote Sensing, 32, 8615-8627(2011).

    [10] K HUANGFU, J LI, X ZHANG et al. Remote Estimation of Water Quality Parameters of Medium- and Small-Sized Inland Rivers Using Sentinel-2 Imagery. Water, 12, 3124(2020).

    [12] K T PETERSON, V SAGAN, J J SLOAN. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience And Remote Sensing, 57, 510-525(2020).

    [13] Y W KIM, T KIM, J SHIN et al. Validity evaluation of a machine-learning model for chlorophyll a retrieval using Sentinel-2 from inland and coastal waters. Ecological Indicators, 137, 108737(2022).

    [14] N GORELICK, M HANCHER, M DIXON et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202(2017).

    [15] M DRUSCH, U DEL BELLO, S CARLIER et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36(2012).

    [16] Li FANG. National surface water quality monitoring data, 04(2020).

    [17] U MULLER-WILM, J LOUIS, R RICHTER et al. Sentinel-2 level 2A prototype processor: Architecture, algorithms and first results, 9-13(2013).

    [18] Z WAN, S HOOK. G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006(2015).

    [19] Z WAN, S HOOK. G. MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006(2015).

    [20] K DIDAN. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006(2015).

    [21] K DIDAN. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006(2015).

    [22] A LYAPUSTIN, Y WANG. MCD19A2 MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1km SIN Grid V006(2018).

    [23] X CHENG. Fine-resolution mapping of pan-arctic lake ice-off phenology based on dense sentinel-2 time series data. Remote Sensing, 13, 2742(2021).

    [24] P J ROUSSEEUW, K V DRIESSEN. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212(1999).

    [25] V N VAPNIK. Adaptive and learning systems for signal processing communications, and control. Statistical Learning Theory(1998).

    [27] R HECHTNIELSEN. Counterpropagation networks. Applied Optics, 26, 4979-4983(1987).

    [28] Fengxia WANG, Zhuoyi XIA, Yuhui GUO et al. Water quality inversion and eutrophication assessment of The South China Sea based on GEE. China Environmental Science, 42, 826-833(2022).

    [29] V N VAPNIK. EEstimation of Dependence Based on Empirical Data. Springer Science & Business Media(2006).

    [30] S KUTER. Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data:Random forests versus support vector regression. Remote Sensing of Environment, 255, 112294(2021).

    [31] L BREIMAN. Bagging predictors. Machine learning, 24, 123-140(1996).

    [32] K HORNIK. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251-257(1991).

    [33] K HORNIK. Some new results on neural network approximation. Neural Networks, 6, 1069-1072(1993).

    [34] S ELLACOTT. W. Aspects of the numerical analysis of neural networks. Acta Numerica, 3, 145-202(1994).

    [35] K HORNIK, M B STINCHCOMBE, H WHITE. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989).

    [36] B KOMER, J BERGSTRA, C ELIASMITH. Hyperopt Sk-learn: Automatic Hyperparameter Configuration for Scikit Learn. Icml Automl Workshop(2014).

    [37] X L WANG, Zhanbin LI. Identifying the Parameters of the Kernel Function in Support Vector Machines Based on the Grid[1]Search Method. Periodical of Ocean University of China, 35, 4(2005).

    [38] N NAGELKERKE. A note on a general definition of the coefficient of determination. Biometrika, 78, 691-702(1991).

    [39] E J COYLE, J H LIN. Stack filters and the mean absolute error criterion. IEEE Trans Acoustics Speech Signal Processing, 36, 1244-1254(1988).

    [40] N K M FABER. Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 49, 79-89(1999).

    [41] J M MONTGOMERY. Water treatment: principles and design(1985).

    [42] Q GUO, D ZHANG, L CAO et al. A Remote Sensing Method to Inverse Chemical Oxygen Demand in Qinghai Lake(2021).

    [43] Yuru XIE, Yang SHEN, Yun XU. Discussion on the Treatment of Eutrophic Water by Algae Membrane. Technology and Enterprise, 268(2014).

    [44] Y H KIM, H-C KIM et al. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Environment international, 134, 105301(2020).

    [45] A K A A CâNDIDO, M R HAUPENTHAL, DA SILVA N M et al. Water quality and chlorophyll measurement through vegetation indices generated from orbital and suborbital images. Water, 227, 1-11(2016).

    [46] F DE ASSIS ESTEVES. Fundamentos de Limnologia. Interciência(1998).

    [47] Jun HUANG, Jianzhong CHEN. Recent advances on the treatment technologies of ammonia-nitrogen wastewater. Journal of Environmental Engineering, 3, 65-68(2002).

    [48] L RODRíGUEZ-LóPEZ, I DURAN-LLACER, L GONZALEZ-RODRIGUEZ et al. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecological Informatics, 60, 101183(2020).

    [49] E J KIM, S H NAM, J W KOO et al. Hybrid approach of Unmanned Aerial Vehicle and Unmanned Surface Vehicle for assessment of chlorophyll-a imagery using spectral indices in Stream, South Korea. Water, 13, 1930(2021).

    [51] M A WARREN, S SIMIS, V MARTINEZ-VICENTE et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment, 225, 267-289(2019).

    [52] H LI, G ZHANG, Y ZHU et al. Inversion and driving force analysis of nutrient concentrations in the ecosystem of the Shenzhen-Hong Kong Bay Area. Remote Sensing, 14, 3694(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zixuan DUI, Qing WANG, Min WANG, Jing ZHANG, Qianrong GU. Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data[J]. Remote Sensing Technology and Application, 2024, 39(1): 120

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 13, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: DUI Zixuan (duizx@sari.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2024.1.0120

    Topics