Remote Sensing Technology and Application, Volume. 39, Issue 1, 120(2024)

Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data

Zixuan DUI1,2、*, Qing WANG3, Min WANG3, Jing ZHANG4, and Qianrong GU1
Author Affiliations
  • 1Shanghai Carbon Data Research Center,Key Laboratory of Low - Carbon Conversion Science & Engineering,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Shanghai Academy of Environmental Sciences,Shanghai 200233,China
  • 4Jiangsu Provincial Judicial Police Officer Higher Vocational College,Nanjing 212008,China
  • show less
    Figures & Tables(13)
    Schematic diagram of support vector regression
    Schematic Diagram of Random Forest
    Schematic diagram of multi-layer perceptron
    Annual boxplots of all surface water quality monitoring data, model training data in the sample set, water quality parameters retrieved by the models with test data in the sample set
    Annual boxplots of all ground-based water quality monitoring data, time-mismatched water quality monitoring data, water quality parameters inverted by the models with time-mismatched multi-source remote sensing data
    Annual boxplots of all ground-based water quality monitoring data, space-mismatched water quality monitoring data, water quality parameters inverted by the models with space-mismatched multi-source remote sensing data
    Spatial distribution of DO, COD and NH3-H water quality parameters in a part of Yangtze and Pearl River retrieved from multi-source remote sensing data
    • Table 1. Time window for matching water quality monitoring data and multi-source remote sensing and meteorological data

      View table
      View in Article

      Table 1. Time window for matching water quality monitoring data and multi-source remote sensing and meteorological data

      数据名称哨兵2MODISERA5
      地表温度植被指数气溶胶
      时间窗口4 h同一天同一天同一天1 h
    • Table 2. The ground water quality monitoring sample data set filtered by spatial and temporal matching with the multi-source remote sensing and meteorological data

      View table
      View in Article

      Table 2. The ground water quality monitoring sample data set filtered by spatial and temporal matching with the multi-source remote sensing and meteorological data

      状态水质参数异常值处理比例样本数平均值/(mgL-1)标准偏差最小值/(mgL-1)最大值/(mgL-1)
      异常值剔除前DO-2708.782.433.7618.07
      COD-2702.292.340.1015.60
      NH3-N-2700.931.420.0010.00
      异常值剔除后DO0.082498.291.544.7012.10
      COD0.102431.681.330.105.25
      NH3-N0.202160.550.650.002.80
    • Table 3. Data set used in model robustness assessment experiments

      View table
      View in Article

      Table 3. Data set used in model robustness assessment experiments

      实验名称数据集水质参数/(个/组)
      DOCODNH3-N
      所有地面水质监测数据812 441811 147804 843
      时空匹配实验训练数据249243216
      测试数据757365
      时间未匹配实验水质监测数据234 470235 918235 598
      多源遥感及气象数据142142142
      空间未匹配实验水质监测数据575 436580 629574 486
      多源遥感及气象数据219219219
    • Table 4. Optimal hyperparameter table of three machine learning water quality parameter retrieval models

      View table
      View in Article

      Table 4. Optimal hyperparameter table of three machine learning water quality parameter retrieval models

      机器学习模型参数名称非光学活性水质参数
      DOCODNH3-N
      SVRC1001010
      gamma733
      RF决策树个数152615
      树的深度461510
      MLP隐藏层数655
      每个隐藏层神经元数100100100
    • Table 5. DO, COD and NH3-N retrieval results of SVR, RF and MLP models for 14 combinations of input features

      View table
      View in Article

      Table 5. DO, COD and NH3-N retrieval results of SVR, RF and MLP models for 14 combinations of input features

      序号输入数据指标DOCODNH3-N
      SVRRFMLPSVRRFMLPSVRRFMLP
      1MSIR20.8370.8450.8320.6490.6990.6560.2420.4470.485
      MAE/(mgL-1)0.3080.3930.4260.4770.5060.4740.1830.1440.139
      RMSE/(mgL-1)0.4020.3840.4140.5940.5130.6120.1000.0710.066
      2MSI+VIR20.8370.8520.3570.6500.6850.7440.1910.5230.353
      MAE/(mgL-1)0.3020.3750.7290.4850.5020.4150.1880.1390.151
      RMSE/(mgL-1)0.4070.3661.7110.5960.5370.4440.1060.0630.080
      3MSI+LSTR20.8660.8600.7640.6110.6540.6050.2320.2920.386
      MAE/(mgL-1)0.3060.3840.4650.5060.5460.5430.1820.1730.154
      RMSE/(mgL-1)0.3360.3470.5940.6540.5920.7030.1000.0920.078
      4MSI+VI+LSTR20.8900.8790.8410.6710.6730.7170.2510.2320.325
      MAE/(mgL-1)0.2820.3590.3770.4720.5270.4300.1840.1680.154
      RMSE/(mgL-1)0.2740.3000.3970.5600.5580.4910.0980.0960.084
      5MSI+AODR20.8720.8630.8560.6760.6710.7220.3070.5070.432
      MAE/(mgL-1)0.3000.3630.3680.4700.5140.4350.1650.1390.143
      RMSE/(mgL-1)0.3200.3410.3600.5530.5640.4760.0910.0640.072
      6MSI+WSR20.8020.8510.8350.6480.6990.7380.2890.4880.536
      MAE/(mgL-1)0.3440.3850.3770.4640.4950.4310.1720.1430.129
      RMSE/(mgL-1)0.4970.3640.4170.5990.5140.4490.0910.0660.061
      7MSI+AOD+WSR20.8680.8290.7330.7040.6690.7810.3340.5290.502
      MAE/(mgL-1)0.2930.4020.4540.4390.5150.3980.1710.1370.137
      RMSE/(mgL-1)0.3300.4310.6470.5070.5650.3830.0870.0610.065
      8MSI+VI+LST+AOD+WSR20.8890.8680.8530.6700.6600.7420.2210.2780.383
      MAE/(mgL-1)0.2890.3780.3370.4870.5280.4140.1840.1680.153
      RMSE/(mgL-1)0.2780.3320.3670.5640.5780.4450.0990.0920.079
      9MSI+LST+WSR20.8530.8390.6950.6740.6420.7210.2490.3200.436
      MAE/(mgL-1)0.3200.4110.5060.4790.5420.4460.1780.1610.149
      RMSE/(mgL-1)0.3710.4040.7800.5570.6180.4820.0990.0870.073
      10MSI+LST+AODR20.8960.8660.8370.6440.6560.7480.3140.3140.458
      MAE/(mgL-1)0.2760.3690.3680.5060.5430.4380.1750.1650.143
      RMSE/(mgL-1)0.2630.3330.4090.6110.5890.4280.0880.0890.070
      11MSI+LST+AOD+WSR20.8910.8720.8570.7070.6460.7360.2730.2260.381
      MAE/(mgL-1)0.2830.3700.3330.4410.5420.4240.1800.1700.152
      RMSE/(mgL-1)0.2750.3200.3500.5060.6130.4700.0940.0980.078
      12MSI+VI+WSR20.8350.8310.8170.6770.6900.7640.2170.4820.293
      MAE/(mgL-1)0.3050.3820.3580.4640.5020.4040.1850.1450.162
      RMSE/(mgL-1)0.4120.4160.4660.5530.5310.4120.1030.0660.092
      13MSI+VI+AODR20.8690.8560.8670.6920.6670.7140.3130.4590.382
      MAE/(mgL-1)0.2910.3710.3370.4390.5110.4190.1750.1460.146
      RMSE/(mgL-1)0.3240.3600.3370.5290.5710.4980.0880.0690.077
      14MSI+VI+AOD+WSR20.8790.8360.8440.6900.6760.7240.3070.5090.412
      MAE/(mgL-1)0.2910.3960.3440.4520.5020.4090.1770.1390.145
      RMSE/(mgL-1)0.3030.4100.3910.5260.5610.4830.0890.0640.077
    • Table 6. The best retrieval performance of water quality parameters that can be obtained by models of different methods

      View table
      View in Article

      Table 6. The best retrieval performance of water quality parameters that can be obtained by models of different methods

      方法指标非光学活性水质参数
      DOCODNH3-N
      MLRR20.3830.0660.120
      MAE/(mgL-1)1.0271.0460.251
      RMSE/(mgL-1)1.6501.5610.132
      SVRR20.8960.7070.334
      MAE/(mgL-1)0.2760.4410.171
      RMSE/(mgL-1)0.2630.5060.087
      RFR20.8790.6990.529
      MAE/(mgL-1)0.3590.4950.137
      RMSE/(mgL-1)0.3000.5140.061
      MLPR20.8670.7810.536
      MAE/(mgL-1)0.3370.3980.129
      RMSE/(mgL-1)0.3370.3830.061
    Tools

    Get Citation

    Copy Citation Text

    Zixuan DUI, Qing WANG, Min WANG, Jing ZHANG, Qianrong GU. Research on the Retrieval Model of Non-optically Active Water Quality Parameters of Rivers based on Multi-source Remote Sensing and Meteorological Data[J]. Remote Sensing Technology and Application, 2024, 39(1): 120

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 13, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: Zixuan DUI (duizx@sari.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2024.1.0120

    Topics