Chinese Journal of Lasers, Volume. 50, Issue 1, 0113006(2023)
Recent Developments of Organic Optoelectronic Functional Materials and Devices Based on Biphenyl Derivatives
[1] Chiang C K, Fincher C R, Park Y W et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 39, 1098-1101(1977).
[2] Xie Z Y, Liu D, Zhang Y H et al. Recent advances on high mobility emissive anthracene-derived organic semiconductors[J]. Chemical Journal of Chinese Universities, 41, 1179-1193(2020).
[3] Zhu Q C, An M H, Ding R et al. Recent developments on organic single crystal-based light-emitting devices[J]. Chinese Science Bulletin, 66, 2845-2860(2021).
[4] Jiang Y, Liu Y Y, Liu X et al. Organic solid-state lasers: a materials view and future development[J]. Chemical Society Reviews, 49, 5885-5944(2020).
[5] Zhang X T, Dong H L, Hu W P. Organic semiconductor single crystals for electronics and photonics[J]. Advanced Materials, 30, e1801048(2018).
[6] Bronstein H, Nielsen C B, Schroeder B C et al. The role of chemical design in the performance of organic semiconductors[J]. Nature Reviews Chemistry, 4, 66-77(2020).
[7] Zhang X J, Jie J S, Deng W et al. Alignment and patterning of ordered small-molecule organic semiconductor micro-/ nanocrystals for device applications[J]. Advanced Materials, 28, 2475-2503(2016).
[8] Wang Y, Sun L J, Wang C et al. Organic crystalline materials in flexible electronics[J]. Chemical Society Reviews, 48, 1492-1530(2019).
[9] Joo W J, Brongersma M L. Creating the ultimate virtual reality display[J]. Science, 377, 1376-1378(2022).
[10] Su R T, Park S H, Ouyang X et al. 3D-printed flexible organic light-emitting diode displays[J]. Science Advances, 8, eabl8798(2022).
[11] Sun A H, Li Y Z, Chen G et al. Organic light-emitting diodes based on deep-blue exciplex for plant growth[J]. Acta Optica Sinica, 42, 0423001(2022).
[12] Chan C Y, Tanaka M, Lee Y T et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission[J]. Nature Photonics, 15, 203-207(2021).
[13] Zhao J Y, Yan Y L, Gao Z H et al. Full-color laser displays based on organic printed microlaser arrays[J]. Nature Communications, 10, 870(2019).
[14] Punke M, Valouch S, Kettlitz S W et al. Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components[J]. Journal of Lightwave Technology, 26, 816-823(2008).
[15] Yoshida K, Manousiadis P P, Bian R et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link[J]. Nature Communications, 11, 1171(2020).
[16] Zhang W, Yan Y L, Gu J M et al. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer[J]. Angewandte Chemie (International Ed. in English), 54, 7125-7129(2015).
[17] Liu X, Ye Y, Tang Q et al. Progress of OLEDs prepared by inkjet printing[J]. Chinese Optics, 13, 217-228(2020).
[18] Fu X E, Yang F Y, Tang Y. White organic light-emitting diodes with high color-rendering index based on exciplex[J]. Laser&Optoelectronics Progress, 57, 212303(2020).
[19] Liu L J, Kong X B, Liu Y Q et al. Broadband tunable organic semiconductor laser based on liquid crystal/polymer grating[J]. Chinese Journal of Lasers, 46, 0401001(2019).
[20] Adachi C, Tsutsui T, Saito S. Organic electroluminescent device having a hole conductor as an emitting layer[J]. Applied Physics Letters, 55, 1489-1491(1989).
[21] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. The Journal of Chemical Physics, 38, 2042-2043(1963).
[22] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 51, 913-915(1987).
[23] Hosokawa C, Kawasaki N, Sakamoto S et al. Bright blue electroluminescence from hole transporting polycarbonate[J]. Applied Physics Letters, 61, 2503-2505(1992).
[24] Hosokawa C, Higashi H, Nakamura H et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant[J]. Applied Physics Letters, 67, 3853-3855(1995).
[25] Kijima Y, Asai N, Tamura S I. A blue organic light emitting diode[J]. Japanese Journal of Applied Physics, 38, 5274-5277(1999).
[26] Zhang Q S, Tsang D, Kuwabara H et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters[J]. Advanced Materials, 27, 2096-2100(2015).
[27] Jou J H, Kumar S, Agrawal A et al. Approaches for fabricating high efficiency organic light emitting diodes[J]. Journal of Materials Chemistry C, 3, 2974-3002(2015).
[28] Ichikawa M, Nakamura K, Inoue M et al. Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer[J]. Applied Physics Letters, 87, 221113(2005).
[29] Hosokawa C, Tokailin H, Higashi H et al. Efficient electroluminescence of distyrylarylene with hole transporting ability[J]. Journal of Applied Physics, 78, 5831-5833(1995).
[30] Liu S W, Huang C A, Lee J H et al. Blue mixed host organic light emitting devices[J]. Thin Solid Films, 453/454, 312-315(2004).
[31] Shih P I, Shu C F, Tung Y L et al. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials[J]. Applied Physics Letters, 88, 251110(2006).
[32] Setoguchi Y, Adachi C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers[J]. Journal of Applied Physics, 108, 064516(2010).
[33] Kuwae H, Nitta A, Yoshida K et al. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities[J]. Journal of Applied Physics, 118, 155501(2015).
[34] Inoue M, Matsushima T, Adachi C. Low amplified spontaneous emission threshold and suppression of electroluminescence efficiency roll-off in layers doped with ter(9, 9'-spirobifluorene)[J]. Applied Physics Letters, 108, 133302(2016).
[35] Aimono T, Kawamura Y, Goushi K et al. 100% fluorescence efficiency of 4, 4'-bis [(N-carbazole)styryl] biphenyl in a solid film and the very low amplified spontaneous emission threshold[J]. Applied Physics Letters, 86, 071110(2005).
[36] Sandanayaka A S D, Matsushima T, Bencheikh F et al. Indication of current-injection lasing from an organic semiconductor[J]. Applied Physics Express, 12, 061010(2019).
[37] Qin Z S, Gao H K, Liu J Y et al. High-efficiency single-component organic light-emitting transistors[J]. Advanced Materials, 31, e1903175(2019).
[38] Wan Y J, Deng J, Wu W L et al. Efficient organic light-emitting transistors based on high-quality ambipolar single crystals[J]. ACS Applied Materials & Interfaces, 12, 43976-43983(2020).
[39] Hepp A, Heil H, Weise W et al. Light-emitting field-effect transistor based on a tetracene thin film[J]. Physical Review Letters, 91, 157406(2003).
[40] Bisri S Z, Takenobu T, Yomogida Y et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors[J]. Advanced Functional Materials, 19, 1728-1735(2009).
[41] Sawabe K, Takenobu T, Bisri S Z et al. High current densities in a highly photoluminescent organic single-crystal light-emitting transistor[J]. Applied Physics Letters, 97, 043307(2010).
[42] Sawabe K, Imakawa M, Nakano M et al. Current-confinement structure and extremely high current density in organic light-emitting transistors[J]. Advanced Materials, 24, 6141-6146(2012).
[43] Maruyama K, Sawabe K, Sakanoue T et al. Ambipolar light-emitting organic single-crystal transistors with a grating resonator[J]. Scientific Reports, 5, 10221(2015).
[45] Wang Y, Kumashiro R, Li Z F et al. Light emitting ambipolar field-effect transistors of 2, 5-bis(4-biphenyl)bithiophene single crystals with anisotropic carrier mobilities[J]. Applied Physics Letters, 95, 103306(2009).
[46] Kajiwara K, Terasaki K, Yamao T et al. Light-emitting field-effect transistors consisting of bilayer-crystal organic semiconductors[J]. Advanced Functional Materials, 21, 2854-2860(2011).
[47] Oniwa K, Kanagasekaran T, Jin T N et al. Single crystal biphenyl end-capped furan-incorporated oligomers: influence of unusual packing structure on carrier mobility and luminescence[J]. Journal of Materials Chemistry C, 1, 4163-4170(2013).
[48] Komori T, Nakanotani H, Yasuda T et al. Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers[J]. Journal of Materials Chemistry C, 2, 4918-4921(2014).
[49] Sakanoue T, Yahiro M, Adachi C et al. Ambipolar light-emitting organic field-effect transistors using a wide-band-gap blue-emitting small molecule[J]. Applied Physics Letters, 90, 171118(2007).
[50] Sakanoue T, Yahiro M, Adachi C et al. Alignment-free process for asymmetric contact electrodes and their application in light-emitting organic field-effect transistors[J]. Applied Physics Letters, 92, 053505(2008).
[51] Li Y X, Tao X T, Wang F J et al. Effect of substituents on the properties of distyrylarylene-based field-effect transistor materials[J]. Chemical Physics Letters, 470, 264-268(2009).
[52] Li Y X, Liang Z Q, Xi H et al. C—H…π interaction-modulated solid-state packing and carrier mobility in thienyl and thieno[3, 2-b]thienyl end-capped distyrylarylene derivatives[J]. Chemphyschem, 12, 289-294(2011).
[53] He T, Zhang X Y, Jia J et al. Three-dimensional charge transport in organic semiconductor single crystals[J]. Advanced Materials, 24, 2171-2175(2012).
[54] Yin F, De J B, Huang H et al. Molecular engineering of excited-state process for multicolor microcrystalline lasers[J]. Journal of Materials Chemistry C, 10, 4166-4172(2022).
[55] Yin F, De J B, Liu M H et al. High-performance organic laser semiconductor enabling efficient light-emitting transistors and low-threshold microcavity lasers[J]. Nano Letters, 22, 5803-5809(2022).
[56] Ou Q, Peng Q, Shuai Z G. Computational screen-out strategy for electrically pumped organic laser materials[J]. Nature Communications, 11, 4485(2020).
[57] Sun Q, Ren J J, Jiang T et al. Intermolecular charge-transfer-induced strong optical emission from herringbone H-aggregates[J]. Nano Letters, 21, 5394-5400(2021).
[58] De J B, Liu Z Z, Yin F et al. Excited-state-modulated dual-wavelength single-mode lasing from a single-component organic microbelt[J]. Advanced Optical Materials, 10, 2200270(2022).
[59] Dong H Y, Zhang C H, Liu Y et al. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck-Condon principle[J]. Angewandte Chemie (International Ed. in English), 57, 3108-3112(2018).
[60] Hibino R, Nagawa M, Hotta S et al. Emission gain-narrowing from melt-recrystallized organic semiconductors[J]. Advanced Materials, 14, 119-122(2002).
[61] Dong H Y, Zhang C H, Lin X Q et al. Dual-wavelength switchable vibronic lasing in single-crystal organic microdisks[J]. Nano Letters, 17, 91-96(2017).
[62] Herrnsdorf J, Wang Y, McKendry J J D et al. Micro-LED pumped polymer laser: a discussion of future pump sources for organic lasers[J]. Laser & Photonics Reviews, 7, 1065-1078(2013).
[63] Zhang Y F, Forrest S R. Existence of continuous-wave threshold for organic semiconductor lasers[J]. Physical Review B, 84, 241301(2011).
[64] Navarro-Fuster V, Calzado E M, Boj P G et al. Highly photostable organic distributed feedback laser emitting at 573 nm[J]. Applied Physics Letters, 97, 171104(2010).
[65] Sandanayaka A S D, Matsushima T, Bencheikh F et al. Toward continuous-wave operation of organic semiconductor lasers[J]. Science Advances, 3, e1602570(2017).
[66] Mai V T N, Shukla A, Senevirathne A M C et al. Lasing operation under long-pulse excitation in solution-processed organic gain medium: toward CW lasing in organic semiconductors[J]. Advanced Optical Materials, 8, 2001234(2020).
[67] Sandanayaka A S D, Zhao L, Pitrat D et al. Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher[J]. Applied Physics Letters, 108, 223301(2016).
[68] Oyama Y, Mamada M, Shukla A et al. Design strategy for robust organic semiconductor laser dyes[J]. ACS Materials Letters, 2, 161-167(2020).
[69] Abe A, Goushi K, Sandanayaka A S D et al. Numerical study of triplet dynamics in organic semiconductors aimed for the active utilization of triplets by TADF under continuous-wave lasing[J]. The Journal of Physical Chemistry Letters, 13, 1323-1329(2022).
[70] Kasprzak J, Richard M, Kundermann S et al. Bose–Einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).
[71] Deng H, Weihs G, Snoke D et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 15318-15323(2003).
[72] Dietrich C P, Steude A, Tropf L et al. An exciton-polariton laser based on biologically produced fluorescent protein[J]. Science Advances, 2, e1600666(2016).
[73] Kéna-Cohen S, Forrest S R. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 4, 371-375(2010).
[74] Daskalakis K S, Maier S A, Murray R et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 13, 271-278(2014).
[75] Ren J H, Liao Q, Huang H et al. Efficient bosonic condensation of exciton polaritons in an H-aggregate organic single-crystal microcavity[J]. Nano Letters, 20, 7550-7557(2020).
[76] Ishii T, Miyata K, Mamada M et al. Low-threshold exciton-polariton condensation via fast polariton relaxation in organic microcavities[J]. Advanced Optical Materials, 10, 2102034(2022).
[77] Wang K, Zhao Y S. Pursuing electrically pumped lasing with organic semiconductors[J]. Chem, 7, 3221-3231(2021).
[78] Graf A, Held M, Zakharko Y et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities[J]. Nature Materials, 16, 911-917(2017).
[79] Bisri S Z, Takenobu T, Iwasa Y. The pursuit of electrically-driven organic semiconductor lasers[J]. Journal of Materials Chemistry C, 2, 2827-2836(2014).
[80] Samuel I D W, Namdas E B, Turnbull G A. How to recognize lasing[J]. Nature Photonics, 3, 546-549(2009).
Get Citation
Copy Citation Text
Fan Yin, Jianbo De, Qing Liao, Hongbing Fu. Recent Developments of Organic Optoelectronic Functional Materials and Devices Based on Biphenyl Derivatives[J]. Chinese Journal of Lasers, 2023, 50(1): 0113006
Category: micro and nano optics
Received: Aug. 24, 2022
Accepted: Oct. 21, 2022
Published Online: Jan. 6, 2023
The Author Email: Liao Qing (liaoqing@cnu.edu.cn)